L(s) = 1 | + (−0.450 − 1.34i)2-s + (−0.0929 + 1.72i)3-s + (−1.59 + 1.20i)4-s + (−0.187 − 0.325i)5-s + (2.36 − 0.654i)6-s + (−0.198 + 2.63i)7-s + (2.33 + 1.59i)8-s + (−2.98 − 0.321i)9-s + (−0.351 + 0.398i)10-s + (4.18 + 2.41i)11-s + (−1.94 − 2.86i)12-s + 4.40i·13-s + (3.62 − 0.922i)14-s + (0.580 − 0.294i)15-s + (1.08 − 3.85i)16-s + (−2.39 − 1.38i)17-s + ⋯ |
L(s) = 1 | + (−0.318 − 0.947i)2-s + (−0.0536 + 0.998i)3-s + (−0.797 + 0.603i)4-s + (−0.0839 − 0.145i)5-s + (0.963 − 0.267i)6-s + (−0.0750 + 0.997i)7-s + (0.826 + 0.563i)8-s + (−0.994 − 0.107i)9-s + (−0.111 + 0.125i)10-s + (1.26 + 0.728i)11-s + (−0.560 − 0.828i)12-s + 1.22i·13-s + (0.969 − 0.246i)14-s + (0.149 − 0.0760i)15-s + (0.270 − 0.962i)16-s + (−0.580 − 0.335i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.710 - 0.703i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.782304 + 0.321736i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.782304 + 0.321736i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.450 + 1.34i)T \) |
| 3 | \( 1 + (0.0929 - 1.72i)T \) |
| 7 | \( 1 + (0.198 - 2.63i)T \) |
good | 5 | \( 1 + (0.187 + 0.325i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-4.18 - 2.41i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.40iT - 13T^{2} \) |
| 17 | \( 1 + (2.39 + 1.38i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1.83 - 3.17i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3.60 + 6.25i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 0.968T + 29T^{2} \) |
| 31 | \( 1 + (-2.78 - 1.60i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.459 - 0.265i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 3.88iT - 41T^{2} \) |
| 43 | \( 1 - 0.747T + 43T^{2} \) |
| 47 | \( 1 + (-5.20 - 9.01i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.40 + 2.43i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.65 + 0.953i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-8.43 + 4.86i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.85 + 6.68i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 5.55T + 71T^{2} \) |
| 73 | \( 1 + (0.445 - 0.772i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-11.3 + 6.54i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 10.1iT - 83T^{2} \) |
| 89 | \( 1 + (-4.70 + 2.71i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 5.31T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.26624176626045530058592222559, −12.00240445031495050273533835324, −10.95386335793450735548246783459, −9.763078121062560517755741813356, −9.175517677867360678367539461614, −8.387200754590129763396961822851, −6.44990847801676697606217747613, −4.79264951630804086200307463738, −3.94168818943820832641508493576, −2.28589264349944620694813826725,
0.981453426341582315034742916089, 3.68343914530422648913984860562, 5.49029928105455809227931437435, 6.55947578453129103424020214293, 7.35860287324166107744244167692, 8.263956574493538975934089681136, 9.351141849826412941146908711195, 10.66932292048187171283331080451, 11.64525788965685308463821215142, 13.16457490646207030150810055753