L(s) = 1 | + (1.37 − 0.323i)2-s + (1.70 − 0.283i)3-s + (1.79 − 0.890i)4-s + (−2.24 + 1.29i)5-s + (2.26 − 0.942i)6-s + (−2.53 − 0.751i)7-s + (2.17 − 1.80i)8-s + (2.83 − 0.967i)9-s + (−2.67 + 2.51i)10-s + (−1.63 + 2.83i)11-s + (2.80 − 2.02i)12-s − 0.912·13-s + (−3.73 − 0.214i)14-s + (−3.47 + 2.85i)15-s + (2.41 − 3.18i)16-s + (−2.39 + 4.14i)17-s + ⋯ |
L(s) = 1 | + (0.973 − 0.228i)2-s + (0.986 − 0.163i)3-s + (0.895 − 0.445i)4-s + (−1.00 + 0.580i)5-s + (0.923 − 0.384i)6-s + (−0.958 − 0.284i)7-s + (0.769 − 0.638i)8-s + (0.946 − 0.322i)9-s + (−0.846 + 0.795i)10-s + (−0.493 + 0.855i)11-s + (0.810 − 0.585i)12-s − 0.253·13-s + (−0.998 − 0.0572i)14-s + (−0.897 + 0.737i)15-s + (0.603 − 0.797i)16-s + (−0.580 + 1.00i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 + 0.344i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 + 0.344i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.07254 - 0.368604i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.07254 - 0.368604i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.37 + 0.323i)T \) |
| 3 | \( 1 + (-1.70 + 0.283i)T \) |
| 7 | \( 1 + (2.53 + 0.751i)T \) |
good | 5 | \( 1 + (2.24 - 1.29i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (1.63 - 2.83i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 0.912T + 13T^{2} \) |
| 17 | \( 1 + (2.39 - 4.14i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.66 + 4.61i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.45 + 2.57i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 1.35T + 29T^{2} \) |
| 31 | \( 1 + (-8.18 - 4.72i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (1.59 - 0.922i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 5.91T + 41T^{2} \) |
| 43 | \( 1 + 8.00iT - 43T^{2} \) |
| 47 | \( 1 + (3.29 + 5.70i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (0.841 - 1.45i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (1.50 + 0.867i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-4.72 - 8.18i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-10.8 - 6.27i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 0.603iT - 71T^{2} \) |
| 73 | \( 1 + (1.29 + 0.746i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.0625 + 0.108i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 0.246iT - 83T^{2} \) |
| 89 | \( 1 + (1.80 + 3.12i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.10iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.90921025009565521742279592640, −12.08437106641805831966717552527, −10.75349313253224810605950436262, −10.01202072621643167564366805595, −8.508487341264054406385679683358, −7.11537990602668074670061234614, −6.76050830263650684736096538775, −4.60270480301807287903239710301, −3.57545533958334949801436332504, −2.51949199455668292325114454047,
2.78546641453389050173910249535, 3.77747040583234867593579540976, 4.94148459187719850545050245285, 6.49367416808772968124210309629, 7.74201929700137100107931727553, 8.470549289626051456316929189479, 9.732384762863786199044973063857, 11.13465596048661886890042302585, 12.18924802115817814178699425732, 13.02942361959689160822440521063