| L(s) = 1 | + (0.0857 − 1.41i)2-s + (1.69 − 0.366i)3-s + (−1.98 − 0.242i)4-s + (2.66 − 1.54i)5-s + (−0.372 − 2.42i)6-s + (−1.46 + 2.20i)7-s + (−0.511 + 2.78i)8-s + (2.73 − 1.24i)9-s + (−1.94 − 3.89i)10-s + (−0.621 + 1.07i)11-s + (−3.44 + 0.318i)12-s − 5.98·13-s + (2.98 + 2.25i)14-s + (3.95 − 3.58i)15-s + (3.88 + 0.960i)16-s + (0.595 − 1.03i)17-s + ⋯ |
| L(s) = 1 | + (0.0606 − 0.998i)2-s + (0.977 − 0.211i)3-s + (−0.992 − 0.121i)4-s + (1.19 − 0.688i)5-s + (−0.152 − 0.988i)6-s + (−0.552 + 0.833i)7-s + (−0.180 + 0.983i)8-s + (0.910 − 0.414i)9-s + (−0.615 − 1.23i)10-s + (−0.187 + 0.324i)11-s + (−0.995 + 0.0920i)12-s − 1.66·13-s + (0.798 + 0.602i)14-s + (1.02 − 0.926i)15-s + (0.970 + 0.240i)16-s + (0.144 − 0.250i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0957 + 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0957 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.13790 - 1.03366i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.13790 - 1.03366i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (-0.0857 + 1.41i)T \) |
| 3 | \( 1 + (-1.69 + 0.366i)T \) |
| 7 | \( 1 + (1.46 - 2.20i)T \) |
| good | 5 | \( 1 + (-2.66 + 1.54i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.621 - 1.07i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 5.98T + 13T^{2} \) |
| 17 | \( 1 + (-0.595 + 1.03i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.614 - 1.06i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2.56 - 1.48i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 3.19T + 29T^{2} \) |
| 31 | \( 1 + (-1.33 - 0.773i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.334 - 0.193i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 9.44T + 41T^{2} \) |
| 43 | \( 1 - 8.29iT - 43T^{2} \) |
| 47 | \( 1 + (-3.34 - 5.78i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.25 + 9.09i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.22 + 1.86i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.16 - 5.48i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.7 + 6.19i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6.21iT - 71T^{2} \) |
| 73 | \( 1 + (8.92 + 5.15i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.41 + 11.1i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 5.22iT - 83T^{2} \) |
| 89 | \( 1 + (6.94 + 12.0i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 17.1iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.67430146798281752823836461251, −11.97008737398970704778166157662, −10.09465571923622014919948980214, −9.564077373432417894210749854087, −8.993503056162948148264820729290, −7.66147835900374497053093603161, −5.83199516111567949942628110754, −4.66693758864834600289615720872, −2.85720545392912396130966329342, −1.92604965758628772659653896428,
2.67825410238353480102841831450, 4.17430984920452054806581695253, 5.65703079679624852336279359824, 6.93996238044928832168874163511, 7.59121981069069050082670022589, 9.016769800950299651740556021534, 9.919212152265186950404794782491, 10.34839354503403884414710988285, 12.59904419237282548141913315532, 13.48121572414361865245712883692