Properties

Label 2-168-1.1-c5-0-11
Degree $2$
Conductor $168$
Sign $-1$
Analytic cond. $26.9444$
Root an. cond. $5.19080$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 9·3-s − 64·5-s + 49·7-s + 81·9-s − 54·11-s + 738·13-s − 576·15-s − 848·17-s − 1.60e3·19-s + 441·21-s − 3.67e3·23-s + 971·25-s + 729·27-s − 4.33e3·29-s − 4.76e3·31-s − 486·33-s − 3.13e3·35-s − 2.09e3·37-s + 6.64e3·39-s − 6.11e3·41-s + 7.91e3·43-s − 5.18e3·45-s + 6.57e3·47-s + 2.40e3·49-s − 7.63e3·51-s − 7.89e3·53-s + 3.45e3·55-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.14·5-s + 0.377·7-s + 1/3·9-s − 0.134·11-s + 1.21·13-s − 0.660·15-s − 0.711·17-s − 1.01·19-s + 0.218·21-s − 1.44·23-s + 0.310·25-s + 0.192·27-s − 0.956·29-s − 0.889·31-s − 0.0776·33-s − 0.432·35-s − 0.251·37-s + 0.699·39-s − 0.568·41-s + 0.652·43-s − 0.381·45-s + 0.433·47-s + 1/7·49-s − 0.410·51-s − 0.386·53-s + 0.154·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 168 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(168\)    =    \(2^{3} \cdot 3 \cdot 7\)
Sign: $-1$
Analytic conductor: \(26.9444\)
Root analytic conductor: \(5.19080\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 168,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 - p^{2} T \)
7 \( 1 - p^{2} T \)
good5 \( 1 + 64 T + p^{5} T^{2} \)
11 \( 1 + 54 T + p^{5} T^{2} \)
13 \( 1 - 738 T + p^{5} T^{2} \)
17 \( 1 + 848 T + p^{5} T^{2} \)
19 \( 1 + 1604 T + p^{5} T^{2} \)
23 \( 1 + 3670 T + p^{5} T^{2} \)
29 \( 1 + 4330 T + p^{5} T^{2} \)
31 \( 1 + 4760 T + p^{5} T^{2} \)
37 \( 1 + 2094 T + p^{5} T^{2} \)
41 \( 1 + 6116 T + p^{5} T^{2} \)
43 \( 1 - 7916 T + p^{5} T^{2} \)
47 \( 1 - 6572 T + p^{5} T^{2} \)
53 \( 1 + 7894 T + p^{5} T^{2} \)
59 \( 1 + 41664 T + p^{5} T^{2} \)
61 \( 1 + 26570 T + p^{5} T^{2} \)
67 \( 1 + 41736 T + p^{5} T^{2} \)
71 \( 1 - 83574 T + p^{5} T^{2} \)
73 \( 1 + 42314 T + p^{5} T^{2} \)
79 \( 1 - 508 T + p^{5} T^{2} \)
83 \( 1 + 8364 T + p^{5} T^{2} \)
89 \( 1 + 49220 T + p^{5} T^{2} \)
97 \( 1 - 159670 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.33088169358493994842137367107, −10.59515833574378033149620756321, −9.071916547299560489892329086060, −8.261965650540978813068924289279, −7.47586481468669741687775750765, −6.10073025802046248209309105820, −4.37412813733597309839785724743, −3.58637845354408141371162686901, −1.87748905567315023976649407164, 0, 1.87748905567315023976649407164, 3.58637845354408141371162686901, 4.37412813733597309839785724743, 6.10073025802046248209309105820, 7.47586481468669741687775750765, 8.261965650540978813068924289279, 9.071916547299560489892329086060, 10.59515833574378033149620756321, 11.33088169358493994842137367107

Graph of the $Z$-function along the critical line