Properties

Label 2-1666-1.1-c1-0-9
Degree $2$
Conductor $1666$
Sign $1$
Analytic cond. $13.3030$
Root an. cond. $3.64733$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 9-s − 2·11-s − 2·12-s + 2·13-s + 16-s + 17-s + 18-s − 2·22-s + 4·23-s − 2·24-s − 5·25-s + 2·26-s + 4·27-s + 4·29-s + 32-s + 4·33-s + 34-s + 36-s + 8·37-s − 4·39-s + 2·41-s − 2·44-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.577·12-s + 0.554·13-s + 1/4·16-s + 0.242·17-s + 0.235·18-s − 0.426·22-s + 0.834·23-s − 0.408·24-s − 25-s + 0.392·26-s + 0.769·27-s + 0.742·29-s + 0.176·32-s + 0.696·33-s + 0.171·34-s + 1/6·36-s + 1.31·37-s − 0.640·39-s + 0.312·41-s − 0.301·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1666 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1666 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1666\)    =    \(2 \cdot 7^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(13.3030\)
Root analytic conductor: \(3.64733\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1666,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.697304605\)
\(L(\frac12)\) \(\approx\) \(1.697304605\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
7 \( 1 \)
17 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 4 T + p T^{2} \) 1.29.ae
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 12 T + p T^{2} \) 1.61.am
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.565973118904632348522417349792, −8.418803126683971073229362251105, −7.60714990886078355619416842934, −6.62571407180722531145707218998, −6.00776466444475617807558833728, −5.30864553466560467506407844365, −4.60637393914019774217709833201, −3.53705408459719078408753256035, −2.41873000952486740035473257334, −0.870161894655473165678233970356, 0.870161894655473165678233970356, 2.41873000952486740035473257334, 3.53705408459719078408753256035, 4.60637393914019774217709833201, 5.30864553466560467506407844365, 6.00776466444475617807558833728, 6.62571407180722531145707218998, 7.60714990886078355619416842934, 8.418803126683971073229362251105, 9.565973118904632348522417349792

Graph of the $Z$-function along the critical line