L(s) = 1 | − 2·7-s − 5·13-s + 6·17-s + 6·19-s − 23-s − 5·25-s − 9·29-s + 3·31-s − 8·37-s − 3·41-s − 8·43-s − 7·47-s − 3·49-s + 2·53-s − 4·59-s − 10·61-s + 8·67-s − 7·71-s + 9·73-s − 6·79-s + 14·83-s − 16·89-s + 10·91-s + 6·97-s − 6·101-s + 14·103-s − 14·107-s + ⋯ |
L(s) = 1 | − 0.755·7-s − 1.38·13-s + 1.45·17-s + 1.37·19-s − 0.208·23-s − 25-s − 1.67·29-s + 0.538·31-s − 1.31·37-s − 0.468·41-s − 1.21·43-s − 1.02·47-s − 3/7·49-s + 0.274·53-s − 0.520·59-s − 1.28·61-s + 0.977·67-s − 0.830·71-s + 1.05·73-s − 0.675·79-s + 1.53·83-s − 1.69·89-s + 1.04·91-s + 0.609·97-s − 0.597·101-s + 1.37·103-s − 1.35·107-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 23 | \( 1 + T \) |
good | 5 | \( 1 + p T^{2} \) |
| 7 | \( 1 + 2 T + p T^{2} \) |
| 11 | \( 1 + p T^{2} \) |
| 13 | \( 1 + 5 T + p T^{2} \) |
| 17 | \( 1 - 6 T + p T^{2} \) |
| 19 | \( 1 - 6 T + p T^{2} \) |
| 29 | \( 1 + 9 T + p T^{2} \) |
| 31 | \( 1 - 3 T + p T^{2} \) |
| 37 | \( 1 + 8 T + p T^{2} \) |
| 41 | \( 1 + 3 T + p T^{2} \) |
| 43 | \( 1 + 8 T + p T^{2} \) |
| 47 | \( 1 + 7 T + p T^{2} \) |
| 53 | \( 1 - 2 T + p T^{2} \) |
| 59 | \( 1 + 4 T + p T^{2} \) |
| 61 | \( 1 + 10 T + p T^{2} \) |
| 67 | \( 1 - 8 T + p T^{2} \) |
| 71 | \( 1 + 7 T + p T^{2} \) |
| 73 | \( 1 - 9 T + p T^{2} \) |
| 79 | \( 1 + 6 T + p T^{2} \) |
| 83 | \( 1 - 14 T + p T^{2} \) |
| 89 | \( 1 + 16 T + p T^{2} \) |
| 97 | \( 1 - 6 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.220248871871571959783966327863, −7.955496038847795814418301587668, −7.48035014120651414389916926549, −6.62698149473987247879664007283, −5.57716866354923348134214900896, −5.03186685455612530303945885183, −3.66127566554473431534636647806, −3.03364632252564682099855997353, −1.69343828743407180715859546178, 0,
1.69343828743407180715859546178, 3.03364632252564682099855997353, 3.66127566554473431534636647806, 5.03186685455612530303945885183, 5.57716866354923348134214900896, 6.62698149473987247879664007283, 7.48035014120651414389916926549, 7.955496038847795814418301587668, 9.220248871871571959783966327863