Properties

Label 2-1656-1.1-c1-0-19
Degree $2$
Conductor $1656$
Sign $-1$
Analytic cond. $13.2232$
Root an. cond. $3.63637$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s − 5.12·11-s + 4.56·13-s + 3.12·17-s + 5.12·19-s + 23-s − 25-s + 0.561·29-s − 6.56·31-s − 8.24·37-s − 10.8·41-s − 8·43-s − 11.6·47-s − 7·49-s − 2·53-s + 10.2·55-s + 6.24·59-s + 12.2·61-s − 9.12·65-s − 5.12·67-s − 9.43·71-s − 2.31·73-s − 5.12·79-s + 2.24·83-s − 6.24·85-s + 13.3·89-s − 10.2·95-s + ⋯
L(s)  = 1  − 0.894·5-s − 1.54·11-s + 1.26·13-s + 0.757·17-s + 1.17·19-s + 0.208·23-s − 0.200·25-s + 0.104·29-s − 1.17·31-s − 1.35·37-s − 1.68·41-s − 1.21·43-s − 1.70·47-s − 49-s − 0.274·53-s + 1.38·55-s + 0.813·59-s + 1.56·61-s − 1.13·65-s − 0.625·67-s − 1.12·71-s − 0.270·73-s − 0.576·79-s + 0.246·83-s − 0.677·85-s + 1.41·89-s − 1.05·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1656 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1656\)    =    \(2^{3} \cdot 3^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(13.2232\)
Root analytic conductor: \(3.63637\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1656,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 - T \)
good5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 5.12T + 11T^{2} \)
13 \( 1 - 4.56T + 13T^{2} \)
17 \( 1 - 3.12T + 17T^{2} \)
19 \( 1 - 5.12T + 19T^{2} \)
29 \( 1 - 0.561T + 29T^{2} \)
31 \( 1 + 6.56T + 31T^{2} \)
37 \( 1 + 8.24T + 37T^{2} \)
41 \( 1 + 10.8T + 41T^{2} \)
43 \( 1 + 8T + 43T^{2} \)
47 \( 1 + 11.6T + 47T^{2} \)
53 \( 1 + 2T + 53T^{2} \)
59 \( 1 - 6.24T + 59T^{2} \)
61 \( 1 - 12.2T + 61T^{2} \)
67 \( 1 + 5.12T + 67T^{2} \)
71 \( 1 + 9.43T + 71T^{2} \)
73 \( 1 + 2.31T + 73T^{2} \)
79 \( 1 + 5.12T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 - 13.3T + 89T^{2} \)
97 \( 1 + 13.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.746736385064706737840619030030, −8.124290424184138514192108824047, −7.55348928553054491057742265065, −6.67963513332516710599777904649, −5.48826647517209078756682284807, −5.00415181104012127363492075101, −3.59820751860751599702084420667, −3.20717455827987912561325873685, −1.59770949758107538041436817562, 0, 1.59770949758107538041436817562, 3.20717455827987912561325873685, 3.59820751860751599702084420667, 5.00415181104012127363492075101, 5.48826647517209078756682284807, 6.67963513332516710599777904649, 7.55348928553054491057742265065, 8.124290424184138514192108824047, 8.746736385064706737840619030030

Graph of the $Z$-function along the critical line