Properties

Label 2-165-165.98-c2-0-9
Degree $2$
Conductor $165$
Sign $0.763 - 0.646i$
Analytic cond. $4.49592$
Root an. cond. $2.12035$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.58 − 1.58i)2-s − 3·3-s − 1.00i·4-s + (−4 + 3i)5-s + (−4.74 + 4.74i)6-s + (3.16 + 3.16i)7-s + (4.74 + 4.74i)8-s + 9·9-s + (−1.58 + 11.0i)10-s + (6.32 + 9i)11-s + 3.00i·12-s + (3.16 − 3.16i)13-s + 10.0·14-s + (12 − 9i)15-s + 19·16-s + (−22.1 + 22.1i)17-s + ⋯
L(s)  = 1  + (0.790 − 0.790i)2-s − 3-s − 0.250i·4-s + (−0.800 + 0.600i)5-s + (−0.790 + 0.790i)6-s + (0.451 + 0.451i)7-s + (0.592 + 0.592i)8-s + 9-s + (−0.158 + 1.10i)10-s + (0.574 + 0.818i)11-s + 0.250i·12-s + (0.243 − 0.243i)13-s + 0.714·14-s + (0.800 − 0.599i)15-s + 1.18·16-s + (−1.30 + 1.30i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.763 - 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165\)    =    \(3 \cdot 5 \cdot 11\)
Sign: $0.763 - 0.646i$
Analytic conductor: \(4.49592\)
Root analytic conductor: \(2.12035\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{165} (98, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 165,\ (\ :1),\ 0.763 - 0.646i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.31678 + 0.482515i\)
\(L(\frac12)\) \(\approx\) \(1.31678 + 0.482515i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + (4 - 3i)T \)
11 \( 1 + (-6.32 - 9i)T \)
good2 \( 1 + (-1.58 + 1.58i)T - 4iT^{2} \)
7 \( 1 + (-3.16 - 3.16i)T + 49iT^{2} \)
13 \( 1 + (-3.16 + 3.16i)T - 169iT^{2} \)
17 \( 1 + (22.1 - 22.1i)T - 289iT^{2} \)
19 \( 1 + 12.6T + 361T^{2} \)
23 \( 1 + (7 - 7i)T - 529iT^{2} \)
29 \( 1 - 18.9iT - 841T^{2} \)
31 \( 1 - 20T + 961T^{2} \)
37 \( 1 + (-7 + 7i)T - 1.36e3iT^{2} \)
41 \( 1 - 69.5T + 1.68e3T^{2} \)
43 \( 1 + (-22.1 + 22.1i)T - 1.84e3iT^{2} \)
47 \( 1 + (43 + 43i)T + 2.20e3iT^{2} \)
53 \( 1 + (-17 + 17i)T - 2.80e3iT^{2} \)
59 \( 1 - 22T + 3.48e3T^{2} \)
61 \( 1 - 94.8iT - 3.72e3T^{2} \)
67 \( 1 + (47 - 47i)T - 4.48e3iT^{2} \)
71 \( 1 + 120iT - 5.04e3T^{2} \)
73 \( 1 + (-22.1 + 22.1i)T - 5.32e3iT^{2} \)
79 \( 1 - 6.32T + 6.24e3T^{2} \)
83 \( 1 + (60.0 + 60.0i)T + 6.88e3iT^{2} \)
89 \( 1 - 100T + 7.92e3T^{2} \)
97 \( 1 + (-43 + 43i)T - 9.40e3iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.44213327061526295494684933109, −11.77059973151490513271338326332, −11.02578689445890207508237521204, −10.36094982041398778292358712897, −8.534092574162266787610122856903, −7.28698936576666739582535603796, −6.10669928088490121067431041171, −4.62024092154609501269514156275, −3.90314218138986698128611897924, −2.02618575779198540181228204384, 0.815873772553838929220468044392, 4.20711322060649126654161278680, 4.66987124642198007116386307474, 6.00951771345949351299846562162, 6.88018361450821282193794470153, 7.969917895895861624085367761883, 9.401910680671323001493922887779, 10.94458171316355277358844700442, 11.45186800212794118935670964269, 12.61970814079493498851470502086

Graph of the $Z$-function along the critical line