L(s) = 1 | + (−1.58 − 1.58i)2-s − 3·3-s + 1.00i·4-s + (−4 − 3i)5-s + (4.74 + 4.74i)6-s + (−3.16 + 3.16i)7-s + (−4.74 + 4.74i)8-s + 9·9-s + (1.58 + 11.0i)10-s + (−6.32 − 9i)11-s − 3.00i·12-s + (−3.16 − 3.16i)13-s + 10.0·14-s + (12 + 9i)15-s + 19·16-s + (22.1 + 22.1i)17-s + ⋯ |
L(s) = 1 | + (−0.790 − 0.790i)2-s − 3-s + 0.250i·4-s + (−0.800 − 0.600i)5-s + (0.790 + 0.790i)6-s + (−0.451 + 0.451i)7-s + (−0.592 + 0.592i)8-s + 9-s + (0.158 + 1.10i)10-s + (−0.574 − 0.818i)11-s − 0.250i·12-s + (−0.243 − 0.243i)13-s + 0.714·14-s + (0.800 + 0.599i)15-s + 1.18·16-s + (1.30 + 1.30i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 - 0.499i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.866 - 0.499i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.255910 + 0.0684379i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.255910 + 0.0684379i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + 3T \) |
| 5 | \( 1 + (4 + 3i)T \) |
| 11 | \( 1 + (6.32 + 9i)T \) |
good | 2 | \( 1 + (1.58 + 1.58i)T + 4iT^{2} \) |
| 7 | \( 1 + (3.16 - 3.16i)T - 49iT^{2} \) |
| 13 | \( 1 + (3.16 + 3.16i)T + 169iT^{2} \) |
| 17 | \( 1 + (-22.1 - 22.1i)T + 289iT^{2} \) |
| 19 | \( 1 - 12.6T + 361T^{2} \) |
| 23 | \( 1 + (7 + 7i)T + 529iT^{2} \) |
| 29 | \( 1 - 18.9iT - 841T^{2} \) |
| 31 | \( 1 - 20T + 961T^{2} \) |
| 37 | \( 1 + (-7 - 7i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + 69.5T + 1.68e3T^{2} \) |
| 43 | \( 1 + (22.1 + 22.1i)T + 1.84e3iT^{2} \) |
| 47 | \( 1 + (43 - 43i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + (-17 - 17i)T + 2.80e3iT^{2} \) |
| 59 | \( 1 - 22T + 3.48e3T^{2} \) |
| 61 | \( 1 - 94.8iT - 3.72e3T^{2} \) |
| 67 | \( 1 + (47 + 47i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 - 120iT - 5.04e3T^{2} \) |
| 73 | \( 1 + (22.1 + 22.1i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 + 6.32T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-60.0 + 60.0i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 - 100T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-43 - 43i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19004342392542213480207245244, −11.72564369093191491136931658099, −10.61179538517258026354749128802, −9.977184131955790713648439079527, −8.708233379118196564152691709577, −7.79277819187836171757978636298, −6.04724562712841034646163230614, −5.16166650956687640814784666138, −3.33633731689427410580707020239, −1.13804576693341082361230013129,
0.28958016450451157587762534494, 3.44479765125009173358696113453, 5.03858702575652500148514561047, 6.55476089761840595762889188947, 7.27764614460008755274870726654, 7.914751280008055650758189281050, 9.757500725037719384576965887502, 10.13392957262479520300124935128, 11.68433857509598171674269903453, 12.13572483157801143734589825922