Properties

Label 2-165-1.1-c3-0-8
Degree $2$
Conductor $165$
Sign $-1$
Analytic cond. $9.73531$
Root an. cond. $3.12014$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.26·2-s − 3·3-s + 19.6·4-s − 5·5-s + 15.7·6-s − 10.3·7-s − 61.4·8-s + 9·9-s + 26.3·10-s + 11·11-s − 59.0·12-s + 63.9·13-s + 54.3·14-s + 15·15-s + 165.·16-s + 17.1·17-s − 47.3·18-s + 90.2·19-s − 98.4·20-s + 30.9·21-s − 57.8·22-s − 212.·23-s + 184.·24-s + 25·25-s − 336.·26-s − 27·27-s − 203.·28-s + ⋯
L(s)  = 1  − 1.86·2-s − 0.577·3-s + 2.46·4-s − 0.447·5-s + 1.07·6-s − 0.557·7-s − 2.71·8-s + 0.333·9-s + 0.831·10-s + 0.301·11-s − 1.42·12-s + 1.36·13-s + 1.03·14-s + 0.258·15-s + 2.59·16-s + 0.244·17-s − 0.620·18-s + 1.08·19-s − 1.10·20-s + 0.321·21-s − 0.560·22-s − 1.92·23-s + 1.56·24-s + 0.200·25-s − 2.53·26-s − 0.192·27-s − 1.37·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165\)    =    \(3 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(9.73531\)
Root analytic conductor: \(3.12014\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 165,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
11 \( 1 - 11T \)
good2 \( 1 + 5.26T + 8T^{2} \)
7 \( 1 + 10.3T + 343T^{2} \)
13 \( 1 - 63.9T + 2.19e3T^{2} \)
17 \( 1 - 17.1T + 4.91e3T^{2} \)
19 \( 1 - 90.2T + 6.85e3T^{2} \)
23 \( 1 + 212.T + 1.21e4T^{2} \)
29 \( 1 - 57.5T + 2.43e4T^{2} \)
31 \( 1 + 141.T + 2.97e4T^{2} \)
37 \( 1 + 257.T + 5.06e4T^{2} \)
41 \( 1 + 225.T + 6.89e4T^{2} \)
43 \( 1 + 347.T + 7.95e4T^{2} \)
47 \( 1 - 404.T + 1.03e5T^{2} \)
53 \( 1 - 259.T + 1.48e5T^{2} \)
59 \( 1 + 853.T + 2.05e5T^{2} \)
61 \( 1 + 203.T + 2.26e5T^{2} \)
67 \( 1 - 266.T + 3.00e5T^{2} \)
71 \( 1 - 92.4T + 3.57e5T^{2} \)
73 \( 1 + 242.T + 3.89e5T^{2} \)
79 \( 1 + 1.02e3T + 4.93e5T^{2} \)
83 \( 1 - 706.T + 5.71e5T^{2} \)
89 \( 1 + 440.T + 7.04e5T^{2} \)
97 \( 1 + 197.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.59989445258717052733217856361, −10.62572089363730959095947307234, −9.854746844123005947391193913803, −8.822250236537784233102160049972, −7.87615370331142558249828812588, −6.82088248415705226338381828771, −5.88239134962647394570004081477, −3.50437855314430610577113437027, −1.46313092156811801131018048418, 0, 1.46313092156811801131018048418, 3.50437855314430610577113437027, 5.88239134962647394570004081477, 6.82088248415705226338381828771, 7.87615370331142558249828812588, 8.822250236537784233102160049972, 9.854746844123005947391193913803, 10.62572089363730959095947307234, 11.59989445258717052733217856361

Graph of the $Z$-function along the critical line