Properties

Label 2-165-1.1-c3-0-19
Degree $2$
Conductor $165$
Sign $-1$
Analytic cond. $9.73531$
Root an. cond. $3.12014$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3.59·2-s − 3·3-s + 4.89·4-s − 5·5-s − 10.7·6-s − 16.1·7-s − 11.1·8-s + 9·9-s − 17.9·10-s + 11·11-s − 14.6·12-s − 54.1·13-s − 57.9·14-s + 15·15-s − 79.2·16-s − 107.·17-s + 32.3·18-s + 48.7·19-s − 24.4·20-s + 48.4·21-s + 39.4·22-s + 11.9·23-s + 33.4·24-s + 25·25-s − 194.·26-s − 27·27-s − 78.9·28-s + ⋯
L(s)  = 1  + 1.26·2-s − 0.577·3-s + 0.611·4-s − 0.447·5-s − 0.732·6-s − 0.871·7-s − 0.493·8-s + 0.333·9-s − 0.567·10-s + 0.301·11-s − 0.353·12-s − 1.15·13-s − 1.10·14-s + 0.258·15-s − 1.23·16-s − 1.52·17-s + 0.423·18-s + 0.588·19-s − 0.273·20-s + 0.503·21-s + 0.382·22-s + 0.108·23-s + 0.284·24-s + 0.200·25-s − 1.46·26-s − 0.192·27-s − 0.533·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 165 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(165\)    =    \(3 \cdot 5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(9.73531\)
Root analytic conductor: \(3.12014\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 165,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
11 \( 1 - 11T \)
good2 \( 1 - 3.59T + 8T^{2} \)
7 \( 1 + 16.1T + 343T^{2} \)
13 \( 1 + 54.1T + 2.19e3T^{2} \)
17 \( 1 + 107.T + 4.91e3T^{2} \)
19 \( 1 - 48.7T + 6.85e3T^{2} \)
23 \( 1 - 11.9T + 1.21e4T^{2} \)
29 \( 1 - 239.T + 2.43e4T^{2} \)
31 \( 1 + 82.0T + 2.97e4T^{2} \)
37 \( 1 + 21.7T + 5.06e4T^{2} \)
41 \( 1 + 124.T + 6.89e4T^{2} \)
43 \( 1 - 224.T + 7.95e4T^{2} \)
47 \( 1 + 186.T + 1.03e5T^{2} \)
53 \( 1 - 233.T + 1.48e5T^{2} \)
59 \( 1 - 232.T + 2.05e5T^{2} \)
61 \( 1 - 163.T + 2.26e5T^{2} \)
67 \( 1 + 876.T + 3.00e5T^{2} \)
71 \( 1 + 733.T + 3.57e5T^{2} \)
73 \( 1 - 1.16e3T + 3.89e5T^{2} \)
79 \( 1 + 588.T + 4.93e5T^{2} \)
83 \( 1 + 1.16e3T + 5.71e5T^{2} \)
89 \( 1 + 1.04e3T + 7.04e5T^{2} \)
97 \( 1 - 1.54e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.11325842279889617853715227935, −11.31503634546292837979045754117, −9.987695812572941867857313303660, −8.883988044396467932812105532638, −7.11217076462862682062123649881, −6.33632740601128452448267112696, −5.06730892068729817480269668819, −4.15210514423586779419605478593, −2.79927966384044821933287276777, 0, 2.79927966384044821933287276777, 4.15210514423586779419605478593, 5.06730892068729817480269668819, 6.33632740601128452448267112696, 7.11217076462862682062123649881, 8.883988044396467932812105532638, 9.987695812572941867857313303660, 11.31503634546292837979045754117, 12.11325842279889617853715227935

Graph of the $Z$-function along the critical line