| L(s) = 1 | + (−3.33 − 2.21i)2-s − 5.00·3-s + (6.22 + 14.7i)4-s + 38.7·5-s + (16.6 + 11.0i)6-s + 50.6·7-s + (11.8 − 62.9i)8-s − 55.9·9-s + (−129. − 85.7i)10-s + 167.·11-s + (−31.1 − 73.7i)12-s + 87.0i·13-s + (−168. − 112. i)14-s − 194.·15-s + (−178. + 183. i)16-s + 509. i·17-s + ⋯ |
| L(s) = 1 | + (−0.833 − 0.552i)2-s − 0.556·3-s + (0.389 + 0.921i)4-s + 1.55·5-s + (0.463 + 0.307i)6-s + 1.03·7-s + (0.184 − 0.982i)8-s − 0.690·9-s + (−1.29 − 0.857i)10-s + 1.38·11-s + (−0.216 − 0.512i)12-s + 0.515i·13-s + (−0.862 − 0.571i)14-s − 0.862·15-s + (−0.696 + 0.717i)16-s + 1.76i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.00125i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.999 - 0.00125i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(\frac{5}{2})\) |
\(\approx\) |
\(1.505279009\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.505279009\) |
| \(L(3)\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (3.33 + 2.21i)T \) |
| 41 | \( 1 + (-652. + 1.54e3i)T \) |
| good | 3 | \( 1 + 5.00T + 81T^{2} \) |
| 5 | \( 1 - 38.7T + 625T^{2} \) |
| 7 | \( 1 - 50.6T + 2.40e3T^{2} \) |
| 11 | \( 1 - 167.T + 1.46e4T^{2} \) |
| 13 | \( 1 - 87.0iT - 2.85e4T^{2} \) |
| 17 | \( 1 - 509. iT - 8.35e4T^{2} \) |
| 19 | \( 1 + 346.T + 1.30e5T^{2} \) |
| 23 | \( 1 + 887. iT - 2.79e5T^{2} \) |
| 29 | \( 1 - 788. iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 511. iT - 9.23e5T^{2} \) |
| 37 | \( 1 - 880.T + 1.87e6T^{2} \) |
| 43 | \( 1 + 966. iT - 3.41e6T^{2} \) |
| 47 | \( 1 - 1.47e3T + 4.87e6T^{2} \) |
| 53 | \( 1 - 5.11e3iT - 7.89e6T^{2} \) |
| 59 | \( 1 - 3.55e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 6.42e3T + 1.38e7T^{2} \) |
| 67 | \( 1 - 3.52e3T + 2.01e7T^{2} \) |
| 71 | \( 1 + 1.51e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + 7.33e3T + 2.83e7T^{2} \) |
| 79 | \( 1 - 7.74e3T + 3.89e7T^{2} \) |
| 83 | \( 1 + 3.44e3iT - 4.74e7T^{2} \) |
| 89 | \( 1 + 5.34e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + 1.16e4iT - 8.85e7T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.99215728445795311384729235057, −10.84872624962754770302445589261, −10.42298369242539964763907906379, −8.957157725283508569839668587279, −8.572957185418219098401777924647, −6.69195476510543786705304711146, −5.94320219811809732499452348933, −4.28214832725492574462898232147, −2.22859318743687798092027930555, −1.28509876018072359009408396647,
0.954943589237459346939065709771, 2.23094889027586708235490901499, 5.02292316835867538252777522706, 5.81971331268643092063724204025, 6.69957796225168403915471121819, 8.089881702569235152488759081124, 9.273001543752847431558739410951, 9.815730280398054514708071986214, 11.22865686561292395534190701923, 11.58876047236405415289659890014