L(s) = 1 | − 2-s − 1.41·3-s + 4-s + 1.41·6-s + 1.41·7-s − 8-s + 1.00·9-s + 1.41·11-s − 1.41·12-s − 1.41·14-s + 16-s − 1.00·18-s − 1.41·19-s − 2.00·21-s − 1.41·22-s + 1.41·24-s − 25-s + 1.41·28-s − 32-s − 2.00·33-s + 1.00·36-s + 1.41·38-s + 41-s + 2.00·42-s + 1.41·44-s − 1.41·47-s − 1.41·48-s + ⋯ |
L(s) = 1 | − 2-s − 1.41·3-s + 4-s + 1.41·6-s + 1.41·7-s − 8-s + 1.00·9-s + 1.41·11-s − 1.41·12-s − 1.41·14-s + 16-s − 1.00·18-s − 1.41·19-s − 2.00·21-s − 1.41·22-s + 1.41·24-s − 25-s + 1.41·28-s − 32-s − 2.00·33-s + 1.00·36-s + 1.41·38-s + 41-s + 2.00·42-s + 1.41·44-s − 1.41·47-s − 1.41·48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.3481268795\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.3481268795\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + T \) |
| 41 | \( 1 - T \) |
good | 3 | \( 1 + 1.41T + T^{2} \) |
| 5 | \( 1 + T^{2} \) |
| 7 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 - 1.41T + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - T^{2} \) |
| 19 | \( 1 + 1.41T + T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + 2T + T^{2} \) |
| 67 | \( 1 - 1.41T + T^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.41T + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.51833864361520564569950340750, −11.59109040205698406505356516171, −11.25219882261673457397142875486, −10.30712458699540265229593530298, −9.024266535468335828680798604443, −7.958130159799043255838239927925, −6.69921581546472461321751958786, −5.83779551634800273249445863948, −4.40272053803656526702806000032, −1.61066445217681730691510386296,
1.61066445217681730691510386296, 4.40272053803656526702806000032, 5.83779551634800273249445863948, 6.69921581546472461321751958786, 7.958130159799043255838239927925, 9.024266535468335828680798604443, 10.30712458699540265229593530298, 11.25219882261673457397142875486, 11.59109040205698406505356516171, 12.51833864361520564569950340750