L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (0.5 − 1.53i)5-s + (0.309 + 0.951i)8-s − 9-s + (0.5 + 1.53i)10-s + (1.11 + 1.53i)13-s + (−0.809 − 0.587i)16-s + (−1.11 + 0.363i)17-s + (0.809 − 0.587i)18-s + (−1.30 − 0.951i)20-s + (−1.30 − 0.951i)25-s + (−1.80 − 0.587i)26-s + 32-s + (0.690 − 0.951i)34-s + ⋯ |
L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.309 − 0.951i)4-s + (0.5 − 1.53i)5-s + (0.309 + 0.951i)8-s − 9-s + (0.5 + 1.53i)10-s + (1.11 + 1.53i)13-s + (−0.809 − 0.587i)16-s + (−1.11 + 0.363i)17-s + (0.809 − 0.587i)18-s + (−1.30 − 0.951i)20-s + (−1.30 − 0.951i)25-s + (−1.80 − 0.587i)26-s + 32-s + (0.690 − 0.951i)34-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0667i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 164 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0667i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.4836251595\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4836251595\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 41 | \( 1 + (0.809 - 0.587i)T \) |
good | 3 | \( 1 + T^{2} \) |
| 5 | \( 1 + (-0.5 + 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 11 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 13 | \( 1 + (-1.11 - 1.53i)T + (-0.309 + 0.951i)T^{2} \) |
| 17 | \( 1 + (1.11 - 0.363i)T + (0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 29 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (0.190 - 0.587i)T + (-0.809 - 0.587i)T^{2} \) |
| 43 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 47 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 53 | \( 1 + (-1.11 - 0.363i)T + (0.809 + 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 67 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 71 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + 0.618T + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 97 | \( 1 + (1.80 + 0.587i)T + (0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.36454637750590006089461080590, −11.88032912583393608308172291929, −11.05081372759508005244730798043, −9.632719146874707793402677145655, −8.711166280378404405933828040312, −8.488002706487949380527181328802, −6.65646052297742784264411778986, −5.71967667474643560245412925019, −4.53447640657719775660999853148, −1.73550282431264646745125129550,
2.51903332244233312931291208173, 3.44006597845181513551764232923, 5.86407998785445718987111686513, 6.89944620426769172352808888648, 8.095820178973720601315976554995, 9.108826497477132658211277265415, 10.43466356887440515148271835817, 10.82600781498994100680873042578, 11.67674798406351145090216960613, 13.10800215697424163384851107610