L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + 0.732i·5-s + (0.866 + 0.5i)7-s − 0.999i·8-s + (0.366 + 0.633i)10-s + (3.23 − 1.86i)11-s + (−0.866 + 3.5i)13-s + 0.999·14-s + (−0.5 − 0.866i)16-s + (−0.133 + 0.232i)17-s + (3.86 + 2.23i)19-s + (0.633 + 0.366i)20-s + (1.86 − 3.23i)22-s + (−1.73 − 3i)23-s + ⋯ |
L(s) = 1 | + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + 0.327i·5-s + (0.327 + 0.188i)7-s − 0.353i·8-s + (0.115 + 0.200i)10-s + (0.974 − 0.562i)11-s + (−0.240 + 0.970i)13-s + 0.267·14-s + (−0.125 − 0.216i)16-s + (−0.0324 + 0.0562i)17-s + (0.886 + 0.512i)19-s + (0.141 + 0.0818i)20-s + (0.397 − 0.689i)22-s + (−0.361 − 0.625i)23-s + ⋯ |
Λ(s)=(=(1638s/2ΓC(s)L(s)(0.967+0.252i)Λ(2−s)
Λ(s)=(=(1638s/2ΓC(s+1/2)L(s)(0.967+0.252i)Λ(1−s)
Degree: |
2 |
Conductor: |
1638
= 2⋅32⋅7⋅13
|
Sign: |
0.967+0.252i
|
Analytic conductor: |
13.0794 |
Root analytic conductor: |
3.61655 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1638(127,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1638, ( :1/2), 0.967+0.252i)
|
Particular Values
L(1) |
≈ |
2.750258754 |
L(21) |
≈ |
2.750258754 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 3 | 1 |
| 7 | 1+(−0.866−0.5i)T |
| 13 | 1+(0.866−3.5i)T |
good | 5 | 1−0.732iT−5T2 |
| 11 | 1+(−3.23+1.86i)T+(5.5−9.52i)T2 |
| 17 | 1+(0.133−0.232i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.86−2.23i)T+(9.5+16.4i)T2 |
| 23 | 1+(1.73+3i)T+(−11.5+19.9i)T2 |
| 29 | 1+(1.5+2.59i)T+(−14.5+25.1i)T2 |
| 31 | 1−7.66iT−31T2 |
| 37 | 1+(−1.09+0.633i)T+(18.5−32.0i)T2 |
| 41 | 1+(−6.06+3.5i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.366+0.633i)T+(−21.5−37.2i)T2 |
| 47 | 1−4.46iT−47T2 |
| 53 | 1−10.4T+53T2 |
| 59 | 1+(0.803+0.464i)T+(29.5+51.0i)T2 |
| 61 | 1+(−5.86+10.1i)T+(−30.5−52.8i)T2 |
| 67 | 1+(11.1−6.46i)T+(33.5−58.0i)T2 |
| 71 | 1+(1.90+1.09i)T+(35.5+61.4i)T2 |
| 73 | 1+6.53iT−73T2 |
| 79 | 1−10.8T+79T2 |
| 83 | 1+5.66iT−83T2 |
| 89 | 1+(5.59−3.23i)T+(44.5−77.0i)T2 |
| 97 | 1+(−0.633−0.366i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.301775824541331496088061455174, −8.764943701750530599666094575509, −7.62812638722583085043280304320, −6.75576668788393758621570743412, −6.11184067962316252122264481034, −5.15154076030173980023054868720, −4.23679128141635827233325340439, −3.43688039242239385669896405475, −2.35630445313236814519010726077, −1.21094993674578404159716550300,
1.09635316575717931541341204383, 2.51548100720292289646161254086, 3.63783633997904440292916259931, 4.48742666992015819705964100624, 5.28515527781232310540471930832, 6.04240685948701470741419830826, 7.13794360000943123884101854617, 7.57119862756372242509886631496, 8.552191533719534780887513450056, 9.357055562636567038969532098530