| L(s) = 1 | + 2·2-s + 4·4-s + 7·7-s + 8·8-s − 39·11-s + 13·13-s + 14·14-s + 16·16-s − 24·17-s + 38·19-s − 78·22-s − 39·23-s − 125·25-s + 26·26-s + 28·28-s + 96·29-s + 227·31-s + 32·32-s − 48·34-s + 425·37-s + 76·38-s + 105·41-s + 344·43-s − 156·44-s − 78·46-s − 99·47-s + 49·49-s + ⋯ |
| L(s) = 1 | + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s − 1.06·11-s + 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.342·17-s + 0.458·19-s − 0.755·22-s − 0.353·23-s − 25-s + 0.196·26-s + 0.188·28-s + 0.614·29-s + 1.31·31-s + 0.176·32-s − 0.242·34-s + 1.88·37-s + 0.324·38-s + 0.399·41-s + 1.21·43-s − 0.534·44-s − 0.250·46-s − 0.307·47-s + 1/7·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(2)\) |
\(\approx\) |
\(3.531806527\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.531806527\) |
| \(L(\frac{5}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 - p T \) |
| 3 | \( 1 \) |
| 7 | \( 1 - p T \) |
| 13 | \( 1 - p T \) |
| good | 5 | \( 1 + p^{3} T^{2} \) |
| 11 | \( 1 + 39 T + p^{3} T^{2} \) |
| 17 | \( 1 + 24 T + p^{3} T^{2} \) |
| 19 | \( 1 - 2 p T + p^{3} T^{2} \) |
| 23 | \( 1 + 39 T + p^{3} T^{2} \) |
| 29 | \( 1 - 96 T + p^{3} T^{2} \) |
| 31 | \( 1 - 227 T + p^{3} T^{2} \) |
| 37 | \( 1 - 425 T + p^{3} T^{2} \) |
| 41 | \( 1 - 105 T + p^{3} T^{2} \) |
| 43 | \( 1 - 8 p T + p^{3} T^{2} \) |
| 47 | \( 1 + 99 T + p^{3} T^{2} \) |
| 53 | \( 1 - 540 T + p^{3} T^{2} \) |
| 59 | \( 1 + 114 T + p^{3} T^{2} \) |
| 61 | \( 1 + 565 T + p^{3} T^{2} \) |
| 67 | \( 1 + 385 T + p^{3} T^{2} \) |
| 71 | \( 1 - 156 T + p^{3} T^{2} \) |
| 73 | \( 1 + 673 T + p^{3} T^{2} \) |
| 79 | \( 1 - 749 T + p^{3} T^{2} \) |
| 83 | \( 1 - 1044 T + p^{3} T^{2} \) |
| 89 | \( 1 - 690 T + p^{3} T^{2} \) |
| 97 | \( 1 - 317 T + p^{3} T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.980021207538217101705670370264, −7.911220580499200874852251006618, −7.60188821443171453953604110924, −6.35140665735117345858229721516, −5.76386307522229898423730883221, −4.80343392632358320918035194111, −4.14214424718886237920003011473, −2.95174984679220826217720905004, −2.17880442447841531528081046751, −0.809051335872597004219867188697,
0.809051335872597004219867188697, 2.17880442447841531528081046751, 2.95174984679220826217720905004, 4.14214424718886237920003011473, 4.80343392632358320918035194111, 5.76386307522229898423730883221, 6.35140665735117345858229721516, 7.60188821443171453953604110924, 7.911220580499200874852251006618, 8.980021207538217101705670370264