Properties

Label 2-1638-1.1-c1-0-9
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3.70·5-s + 7-s − 8-s − 3.70·10-s − 5.70·11-s + 13-s − 14-s + 16-s − 3.70·17-s + 5.70·19-s + 3.70·20-s + 5.70·22-s + 1.70·23-s + 8.70·25-s − 26-s + 28-s + 3.70·29-s − 32-s + 3.70·34-s + 3.70·35-s + 4.29·37-s − 5.70·38-s − 3.70·40-s + 9.40·41-s + 9.10·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.65·5-s + 0.377·7-s − 0.353·8-s − 1.17·10-s − 1.71·11-s + 0.277·13-s − 0.267·14-s + 0.250·16-s − 0.897·17-s + 1.30·19-s + 0.827·20-s + 1.21·22-s + 0.354·23-s + 1.74·25-s − 0.196·26-s + 0.188·28-s + 0.687·29-s − 0.176·32-s + 0.634·34-s + 0.625·35-s + 0.706·37-s − 0.924·38-s − 0.585·40-s + 1.46·41-s + 1.38·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.680378657\)
\(L(\frac12)\) \(\approx\) \(1.680378657\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 - 3.70T + 5T^{2} \)
11 \( 1 + 5.70T + 11T^{2} \)
17 \( 1 + 3.70T + 17T^{2} \)
19 \( 1 - 5.70T + 19T^{2} \)
23 \( 1 - 1.70T + 23T^{2} \)
29 \( 1 - 3.70T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 4.29T + 37T^{2} \)
41 \( 1 - 9.40T + 41T^{2} \)
43 \( 1 - 9.10T + 43T^{2} \)
47 \( 1 - 8T + 47T^{2} \)
53 \( 1 - 2T + 53T^{2} \)
59 \( 1 + 10.8T + 59T^{2} \)
61 \( 1 - 7.70T + 61T^{2} \)
67 \( 1 + 7.40T + 67T^{2} \)
71 \( 1 - 8T + 71T^{2} \)
73 \( 1 + 7.70T + 73T^{2} \)
79 \( 1 + 3.40T + 79T^{2} \)
83 \( 1 - 0.596T + 83T^{2} \)
89 \( 1 + 16.8T + 89T^{2} \)
97 \( 1 - 16.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.390783672766022918018894661632, −8.779979858745485724139932563583, −7.81378514019804717931066686645, −7.13837934149295601917379291274, −6.00227292216705132091218800281, −5.55716856392490862171145576983, −4.62191857179989800892526889459, −2.81400997151887775197998714912, −2.30095244489171223406552275491, −1.04596359762318593978200431068, 1.04596359762318593978200431068, 2.30095244489171223406552275491, 2.81400997151887775197998714912, 4.62191857179989800892526889459, 5.55716856392490862171145576983, 6.00227292216705132091218800281, 7.13837934149295601917379291274, 7.81378514019804717931066686645, 8.779979858745485724139932563583, 9.390783672766022918018894661632

Graph of the $Z$-function along the critical line