Properties

Label 2-1638-1.1-c1-0-7
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2.37·5-s − 7-s + 8-s − 2.37·10-s + 2.37·11-s − 13-s − 14-s + 16-s + 4.37·17-s + 1.62·19-s − 2.37·20-s + 2.37·22-s + 3.62·23-s + 0.627·25-s − 26-s − 28-s + 6.37·29-s − 4.74·31-s + 32-s + 4.37·34-s + 2.37·35-s − 4.37·37-s + 1.62·38-s − 2.37·40-s + 8.74·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.5·4-s − 1.06·5-s − 0.377·7-s + 0.353·8-s − 0.750·10-s + 0.715·11-s − 0.277·13-s − 0.267·14-s + 0.250·16-s + 1.06·17-s + 0.373·19-s − 0.530·20-s + 0.505·22-s + 0.756·23-s + 0.125·25-s − 0.196·26-s − 0.188·28-s + 1.18·29-s − 0.852·31-s + 0.176·32-s + 0.749·34-s + 0.400·35-s − 0.718·37-s + 0.264·38-s − 0.375·40-s + 1.36·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.260385246\)
\(L(\frac12)\) \(\approx\) \(2.260385246\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 2.37T + 5T^{2} \)
11 \( 1 - 2.37T + 11T^{2} \)
17 \( 1 - 4.37T + 17T^{2} \)
19 \( 1 - 1.62T + 19T^{2} \)
23 \( 1 - 3.62T + 23T^{2} \)
29 \( 1 - 6.37T + 29T^{2} \)
31 \( 1 + 4.74T + 31T^{2} \)
37 \( 1 + 4.37T + 37T^{2} \)
41 \( 1 - 8.74T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 - 1.25T + 47T^{2} \)
53 \( 1 - 8.74T + 53T^{2} \)
59 \( 1 - 2T + 59T^{2} \)
61 \( 1 - 5.11T + 61T^{2} \)
67 \( 1 - 9.48T + 67T^{2} \)
71 \( 1 + 4.74T + 71T^{2} \)
73 \( 1 + 8.37T + 73T^{2} \)
79 \( 1 - 4.74T + 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + 3.25T + 89T^{2} \)
97 \( 1 - 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.373857463487479114668721141890, −8.511085555264429188428361004414, −7.51167601164705766351562169422, −7.10947571004955242301607573170, −6.06076001080333560473021100537, −5.22538541035983250319292524494, −4.18261892703617307841785715116, −3.59714856281968611883874867388, −2.64434025492289001675448653364, −0.979531254790084051525936085842, 0.979531254790084051525936085842, 2.64434025492289001675448653364, 3.59714856281968611883874867388, 4.18261892703617307841785715116, 5.22538541035983250319292524494, 6.06076001080333560473021100537, 7.10947571004955242301607573170, 7.51167601164705766351562169422, 8.511085555264429188428361004414, 9.373857463487479114668721141890

Graph of the $Z$-function along the critical line