Properties

Label 2-1638-1.1-c1-0-5
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s + 3·11-s + 13-s − 14-s + 16-s + 2·19-s − 3·22-s + 3·23-s − 5·25-s − 26-s + 28-s + 5·31-s − 32-s − 7·37-s − 2·38-s − 3·41-s + 8·43-s + 3·44-s − 3·46-s + 3·47-s + 49-s + 5·50-s + 52-s + 12·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s + 0.904·11-s + 0.277·13-s − 0.267·14-s + 1/4·16-s + 0.458·19-s − 0.639·22-s + 0.625·23-s − 25-s − 0.196·26-s + 0.188·28-s + 0.898·31-s − 0.176·32-s − 1.15·37-s − 0.324·38-s − 0.468·41-s + 1.21·43-s + 0.452·44-s − 0.442·46-s + 0.437·47-s + 1/7·49-s + 0.707·50-s + 0.138·52-s + 1.64·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.387653705\)
\(L(\frac12)\) \(\approx\) \(1.387653705\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 3 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 5 T + p T^{2} \)
37 \( 1 + 7 T + p T^{2} \)
41 \( 1 + 3 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 3 T + p T^{2} \)
53 \( 1 - 12 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 - 5 T + p T^{2} \)
71 \( 1 + 12 T + p T^{2} \)
73 \( 1 - 11 T + p T^{2} \)
79 \( 1 + T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 - 18 T + p T^{2} \)
97 \( 1 - 17 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.220725747608034123664354362313, −8.741104533844239670652837381474, −7.83867260492541076636187152090, −7.11996296423595540415557652746, −6.29215796679279225700527276455, −5.42538218373963254725865788850, −4.29341565444102448956917987575, −3.31582010907805915748552075894, −2.05606432181352469404790479184, −0.957671658928271127099414366745, 0.957671658928271127099414366745, 2.05606432181352469404790479184, 3.31582010907805915748552075894, 4.29341565444102448956917987575, 5.42538218373963254725865788850, 6.29215796679279225700527276455, 7.11996296423595540415557652746, 7.83867260492541076636187152090, 8.741104533844239670652837381474, 9.220725747608034123664354362313

Graph of the $Z$-function along the critical line