Properties

Label 2-1638-1.1-c1-0-25
Degree $2$
Conductor $1638$
Sign $-1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 2.37·5-s − 7-s − 8-s − 2.37·10-s − 2.37·11-s − 13-s + 14-s + 16-s − 4.37·17-s + 1.62·19-s + 2.37·20-s + 2.37·22-s − 3.62·23-s + 0.627·25-s + 26-s − 28-s − 6.37·29-s − 4.74·31-s − 32-s + 4.37·34-s − 2.37·35-s − 4.37·37-s − 1.62·38-s − 2.37·40-s − 8.74·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.06·5-s − 0.377·7-s − 0.353·8-s − 0.750·10-s − 0.715·11-s − 0.277·13-s + 0.267·14-s + 0.250·16-s − 1.06·17-s + 0.373·19-s + 0.530·20-s + 0.505·22-s − 0.756·23-s + 0.125·25-s + 0.196·26-s − 0.188·28-s − 1.18·29-s − 0.852·31-s − 0.176·32-s + 0.749·34-s − 0.400·35-s − 0.718·37-s − 0.264·38-s − 0.375·40-s − 1.36·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 - 2.37T + 5T^{2} \)
11 \( 1 + 2.37T + 11T^{2} \)
17 \( 1 + 4.37T + 17T^{2} \)
19 \( 1 - 1.62T + 19T^{2} \)
23 \( 1 + 3.62T + 23T^{2} \)
29 \( 1 + 6.37T + 29T^{2} \)
31 \( 1 + 4.74T + 31T^{2} \)
37 \( 1 + 4.37T + 37T^{2} \)
41 \( 1 + 8.74T + 41T^{2} \)
43 \( 1 - 11.1T + 43T^{2} \)
47 \( 1 + 1.25T + 47T^{2} \)
53 \( 1 + 8.74T + 53T^{2} \)
59 \( 1 + 2T + 59T^{2} \)
61 \( 1 - 5.11T + 61T^{2} \)
67 \( 1 - 9.48T + 67T^{2} \)
71 \( 1 - 4.74T + 71T^{2} \)
73 \( 1 + 8.37T + 73T^{2} \)
79 \( 1 - 4.74T + 79T^{2} \)
83 \( 1 - 6T + 83T^{2} \)
89 \( 1 - 3.25T + 89T^{2} \)
97 \( 1 - 7.48T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.264758911407156563888603477018, −8.268370882311083287689241847032, −7.42923623309789783410537304302, −6.62484183891555434184198078022, −5.82079516281229296328270462356, −5.10294672005574355370651186155, −3.72369407554880991311684408715, −2.49854346334982563017249572655, −1.78278293733586413521740955796, 0, 1.78278293733586413521740955796, 2.49854346334982563017249572655, 3.72369407554880991311684408715, 5.10294672005574355370651186155, 5.82079516281229296328270462356, 6.62484183891555434184198078022, 7.42923623309789783410537304302, 8.268370882311083287689241847032, 9.264758911407156563888603477018

Graph of the $Z$-function along the critical line