Properties

Label 2-1638-1.1-c1-0-16
Degree $2$
Conductor $1638$
Sign $-1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 3.56·5-s − 7-s − 8-s + 3.56·10-s + 1.56·11-s + 13-s + 14-s + 16-s + 6.68·17-s − 4.68·19-s − 3.56·20-s − 1.56·22-s + 5.56·23-s + 7.68·25-s − 26-s − 28-s − 6.68·29-s + 6.24·31-s − 32-s − 6.68·34-s + 3.56·35-s − 7.56·37-s + 4.68·38-s + 3.56·40-s + 1.12·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.59·5-s − 0.377·7-s − 0.353·8-s + 1.12·10-s + 0.470·11-s + 0.277·13-s + 0.267·14-s + 0.250·16-s + 1.62·17-s − 1.07·19-s − 0.796·20-s − 0.332·22-s + 1.15·23-s + 1.53·25-s − 0.196·26-s − 0.188·28-s − 1.24·29-s + 1.12·31-s − 0.176·32-s − 1.14·34-s + 0.602·35-s − 1.24·37-s + 0.759·38-s + 0.563·40-s + 0.175·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $-1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 - T \)
good5 \( 1 + 3.56T + 5T^{2} \)
11 \( 1 - 1.56T + 11T^{2} \)
17 \( 1 - 6.68T + 17T^{2} \)
19 \( 1 + 4.68T + 19T^{2} \)
23 \( 1 - 5.56T + 23T^{2} \)
29 \( 1 + 6.68T + 29T^{2} \)
31 \( 1 - 6.24T + 31T^{2} \)
37 \( 1 + 7.56T + 37T^{2} \)
41 \( 1 - 1.12T + 41T^{2} \)
43 \( 1 + 6.43T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 12.2T + 53T^{2} \)
59 \( 1 + 2.24T + 59T^{2} \)
61 \( 1 - 6.68T + 61T^{2} \)
67 \( 1 + 7.12T + 67T^{2} \)
71 \( 1 + 8T + 71T^{2} \)
73 \( 1 + 3.56T + 73T^{2} \)
79 \( 1 + 11.1T + 79T^{2} \)
83 \( 1 + 8.87T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 - 14.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.786681186988976237867539731911, −8.269562579899544367306491342018, −7.46708607069936873467966307679, −6.89280920834416277493602414599, −5.90726272870591041979045530985, −4.69516632185330918124084363894, −3.67279003312917711289435593032, −3.06451183452278075127846203459, −1.33777036551990798132863711896, 0, 1.33777036551990798132863711896, 3.06451183452278075127846203459, 3.67279003312917711289435593032, 4.69516632185330918124084363894, 5.90726272870591041979045530985, 6.89280920834416277493602414599, 7.46708607069936873467966307679, 8.269562579899544367306491342018, 8.786681186988976237867539731911

Graph of the $Z$-function along the critical line