Properties

Label 2-1638-1.1-c1-0-11
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 7-s + 8-s + 13-s + 14-s + 16-s + 6·17-s − 4·19-s + 6·23-s − 5·25-s + 26-s + 28-s + 8·31-s + 32-s + 6·34-s + 2·37-s − 4·38-s − 4·43-s + 6·46-s + 6·47-s + 49-s − 5·50-s + 52-s + 56-s + 6·59-s + 2·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.377·7-s + 0.353·8-s + 0.277·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.917·19-s + 1.25·23-s − 25-s + 0.196·26-s + 0.188·28-s + 1.43·31-s + 0.176·32-s + 1.02·34-s + 0.328·37-s − 0.648·38-s − 0.609·43-s + 0.884·46-s + 0.875·47-s + 1/7·49-s − 0.707·50-s + 0.138·52-s + 0.133·56-s + 0.781·59-s + 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.973327229\)
\(L(\frac12)\) \(\approx\) \(2.973327229\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
11 \( 1 + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 + 4 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 10 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 - 12 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.448089795162708261938826389090, −8.408186985546070048356781615288, −7.78209670110472060321573804821, −6.86749409126732442342323738197, −6.02002624790821740098186487257, −5.25930237032666547409438421626, −4.38911319045089210033771368586, −3.48579012749559392932250457300, −2.47725820805684354198061161114, −1.18862924143215577465653274813, 1.18862924143215577465653274813, 2.47725820805684354198061161114, 3.48579012749559392932250457300, 4.38911319045089210033771368586, 5.25930237032666547409438421626, 6.02002624790821740098186487257, 6.86749409126732442342323738197, 7.78209670110472060321573804821, 8.408186985546070048356781615288, 9.448089795162708261938826389090

Graph of the $Z$-function along the critical line