Properties

Label 2-1638-1.1-c1-0-1
Degree $2$
Conductor $1638$
Sign $1$
Analytic cond. $13.0794$
Root an. cond. $3.61655$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 7-s − 8-s + 2·10-s − 4·11-s − 13-s + 14-s + 16-s + 6·17-s − 2·20-s + 4·22-s − 8·23-s − 25-s + 26-s − 28-s + 10·29-s − 8·31-s − 32-s − 6·34-s + 2·35-s + 6·37-s + 2·40-s + 6·41-s + 4·43-s − 4·44-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s − 0.353·8-s + 0.632·10-s − 1.20·11-s − 0.277·13-s + 0.267·14-s + 1/4·16-s + 1.45·17-s − 0.447·20-s + 0.852·22-s − 1.66·23-s − 1/5·25-s + 0.196·26-s − 0.188·28-s + 1.85·29-s − 1.43·31-s − 0.176·32-s − 1.02·34-s + 0.338·35-s + 0.986·37-s + 0.316·40-s + 0.937·41-s + 0.609·43-s − 0.603·44-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1638 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1638\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(13.0794\)
Root analytic conductor: \(3.61655\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1638,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7070504174\)
\(L(\frac12)\) \(\approx\) \(0.7070504174\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 - 10 T + p T^{2} \)
31 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 8 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 8 T + p T^{2} \)
61 \( 1 - 10 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 8 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.510038381479805846129615572317, −8.369588935348609600456733576104, −7.80088849136349478139956350243, −7.40803372522333751876994487224, −6.19483789697770666814563584573, −5.44024157926880829299881771792, −4.23885567109427787805557130576, −3.27331439299451669391457686232, −2.29694658439320588323627036273, −0.62603155646423681877598241271, 0.62603155646423681877598241271, 2.29694658439320588323627036273, 3.27331439299451669391457686232, 4.23885567109427787805557130576, 5.44024157926880829299881771792, 6.19483789697770666814563584573, 7.40803372522333751876994487224, 7.80088849136349478139956350243, 8.369588935348609600456733576104, 9.510038381479805846129615572317

Graph of the $Z$-function along the critical line