Properties

Label 2-16245-1.1-c1-0-2
Degree $2$
Conductor $16245$
Sign $1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s + 5-s − 2·7-s − 3·8-s + 10-s + 2·11-s + 4·13-s − 2·14-s − 16-s − 2·17-s − 20-s + 2·22-s + 4·23-s + 25-s + 4·26-s + 2·28-s + 4·29-s + 5·32-s − 2·34-s − 2·35-s − 3·40-s − 10·43-s − 2·44-s + 4·46-s − 12·47-s − 3·49-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s + 0.447·5-s − 0.755·7-s − 1.06·8-s + 0.316·10-s + 0.603·11-s + 1.10·13-s − 0.534·14-s − 1/4·16-s − 0.485·17-s − 0.223·20-s + 0.426·22-s + 0.834·23-s + 1/5·25-s + 0.784·26-s + 0.377·28-s + 0.742·29-s + 0.883·32-s − 0.342·34-s − 0.338·35-s − 0.474·40-s − 1.52·43-s − 0.301·44-s + 0.589·46-s − 1.75·47-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.444560313\)
\(L(\frac12)\) \(\approx\) \(2.444560313\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 - 2 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 16 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 - 16 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.05924563120588, −15.18160833840029, −14.81326956056368, −14.17464142044492, −13.61785257454682, −13.20684858260365, −12.87018141750842, −12.20395209171754, −11.52781388379298, −11.03522288967006, −10.19073915353180, −9.644172310353046, −9.185795515474214, −8.545719862014391, −8.126671748494783, −6.852398507025408, −6.491339314076398, −6.084660061716592, −5.148974979978484, −4.791193369201695, −3.783983053590856, −3.458800072967541, −2.699829711093869, −1.602201411677286, −0.6188287410026561, 0.6188287410026561, 1.602201411677286, 2.699829711093869, 3.458800072967541, 3.783983053590856, 4.791193369201695, 5.148974979978484, 6.084660061716592, 6.491339314076398, 6.852398507025408, 8.126671748494783, 8.545719862014391, 9.185795515474214, 9.644172310353046, 10.19073915353180, 11.03522288967006, 11.52781388379298, 12.20395209171754, 12.87018141750842, 13.20684858260365, 13.61785257454682, 14.17464142044492, 14.81326956056368, 15.18160833840029, 16.05924563120588

Graph of the $Z$-function along the critical line