Properties

Label 2-16245-1.1-c1-0-0
Degree $2$
Conductor $16245$
Sign $1$
Analytic cond. $129.716$
Root an. cond. $11.3893$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·2-s + 2·4-s + 5-s − 2·7-s − 2·10-s − 11-s − 2·13-s + 4·14-s − 4·16-s − 2·17-s + 2·20-s + 2·22-s + 4·23-s + 25-s + 4·26-s − 4·28-s − 5·29-s − 9·31-s + 8·32-s + 4·34-s − 2·35-s + 6·37-s + 6·41-s − 10·43-s − 2·44-s − 8·46-s − 3·49-s + ⋯
L(s)  = 1  − 1.41·2-s + 4-s + 0.447·5-s − 0.755·7-s − 0.632·10-s − 0.301·11-s − 0.554·13-s + 1.06·14-s − 16-s − 0.485·17-s + 0.447·20-s + 0.426·22-s + 0.834·23-s + 1/5·25-s + 0.784·26-s − 0.755·28-s − 0.928·29-s − 1.61·31-s + 1.41·32-s + 0.685·34-s − 0.338·35-s + 0.986·37-s + 0.937·41-s − 1.52·43-s − 0.301·44-s − 1.17·46-s − 3/7·49-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 16245 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(16245\)    =    \(3^{2} \cdot 5 \cdot 19^{2}\)
Sign: $1$
Analytic conductor: \(129.716\)
Root analytic conductor: \(11.3893\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 16245,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.4492485878\)
\(L(\frac12)\) \(\approx\) \(0.4492485878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - T \)
19 \( 1 \)
good2 \( 1 + p T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 - 6 T + p T^{2} \)
43 \( 1 + 10 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 7 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 3 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 - 11 T + p T^{2} \)
83 \( 1 + 6 T + p T^{2} \)
89 \( 1 - 15 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.18225623696845, −15.64318284683644, −14.82185059813068, −14.56370504848972, −13.45371440170632, −13.21924924958263, −12.71004364014136, −11.87835266797893, −11.12733761060887, −10.79015202988201, −10.13799177428838, −9.519884976881647, −9.271232335613251, −8.729982058443670, −7.879603632123751, −7.441312084124513, −6.807158897839503, −6.263690779806886, −5.403147159586525, −4.763127068157815, −3.829209172547316, −2.928629259318299, −2.207368834790888, −1.463180695101971, −0.3632343960846808, 0.3632343960846808, 1.463180695101971, 2.207368834790888, 2.928629259318299, 3.829209172547316, 4.763127068157815, 5.403147159586525, 6.263690779806886, 6.807158897839503, 7.441312084124513, 7.879603632123751, 8.729982058443670, 9.271232335613251, 9.519884976881647, 10.13799177428838, 10.79015202988201, 11.12733761060887, 11.87835266797893, 12.71004364014136, 13.21924924958263, 13.45371440170632, 14.56370504848972, 14.82185059813068, 15.64318284683644, 16.18225623696845

Graph of the $Z$-function along the critical line