Properties

Label 2-1620-9.7-c3-0-30
Degree 22
Conductor 16201620
Sign 0.9390.342i0.939 - 0.342i
Analytic cond. 95.583095.5830
Root an. cond. 9.776669.77666
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.5 + 4.33i)5-s + (−16 + 27.7i)7-s + (18 − 31.1i)11-s + (5 + 8.66i)13-s + 78·17-s + 140·19-s + (−96 − 166. i)23-s + (−12.5 + 21.6i)25-s + (3 − 5.19i)29-s + (8 + 13.8i)31-s − 160·35-s − 34·37-s + (−195 − 337. i)41-s + (26 − 45.0i)43-s + (204 − 353. i)47-s + ⋯
L(s)  = 1  + (0.223 + 0.387i)5-s + (−0.863 + 1.49i)7-s + (0.493 − 0.854i)11-s + (0.106 + 0.184i)13-s + 1.11·17-s + 1.69·19-s + (−0.870 − 1.50i)23-s + (−0.100 + 0.173i)25-s + (0.0192 − 0.0332i)29-s + (0.0463 + 0.0802i)31-s − 0.772·35-s − 0.151·37-s + (−0.742 − 1.28i)41-s + (0.0922 − 0.159i)43-s + (0.633 − 1.09i)47-s + ⋯

Functional equation

Λ(s)=(1620s/2ΓC(s)L(s)=((0.9390.342i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(1620s/2ΓC(s+3/2)L(s)=((0.9390.342i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16201620    =    223452^{2} \cdot 3^{4} \cdot 5
Sign: 0.9390.342i0.939 - 0.342i
Analytic conductor: 95.583095.5830
Root analytic conductor: 9.776669.77666
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ1620(541,)\chi_{1620} (541, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1620, ( :3/2), 0.9390.342i)(2,\ 1620,\ (\ :3/2),\ 0.939 - 0.342i)

Particular Values

L(2)L(2) \approx 2.1943910732.194391073
L(12)L(\frac12) \approx 2.1943910732.194391073
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(2.54.33i)T 1 + (-2.5 - 4.33i)T
good7 1+(1627.7i)T+(171.5297.i)T2 1 + (16 - 27.7i)T + (-171.5 - 297. i)T^{2}
11 1+(18+31.1i)T+(665.51.15e3i)T2 1 + (-18 + 31.1i)T + (-665.5 - 1.15e3i)T^{2}
13 1+(58.66i)T+(1.09e3+1.90e3i)T2 1 + (-5 - 8.66i)T + (-1.09e3 + 1.90e3i)T^{2}
17 178T+4.91e3T2 1 - 78T + 4.91e3T^{2}
19 1140T+6.85e3T2 1 - 140T + 6.85e3T^{2}
23 1+(96+166.i)T+(6.08e3+1.05e4i)T2 1 + (96 + 166. i)T + (-6.08e3 + 1.05e4i)T^{2}
29 1+(3+5.19i)T+(1.21e42.11e4i)T2 1 + (-3 + 5.19i)T + (-1.21e4 - 2.11e4i)T^{2}
31 1+(813.8i)T+(1.48e4+2.57e4i)T2 1 + (-8 - 13.8i)T + (-1.48e4 + 2.57e4i)T^{2}
37 1+34T+5.06e4T2 1 + 34T + 5.06e4T^{2}
41 1+(195+337.i)T+(3.44e4+5.96e4i)T2 1 + (195 + 337. i)T + (-3.44e4 + 5.96e4i)T^{2}
43 1+(26+45.0i)T+(3.97e46.88e4i)T2 1 + (-26 + 45.0i)T + (-3.97e4 - 6.88e4i)T^{2}
47 1+(204+353.i)T+(5.19e48.99e4i)T2 1 + (-204 + 353. i)T + (-5.19e4 - 8.99e4i)T^{2}
53 1114T+1.48e5T2 1 - 114T + 1.48e5T^{2}
59 1+(258446.i)T+(1.02e5+1.77e5i)T2 1 + (-258 - 446. i)T + (-1.02e5 + 1.77e5i)T^{2}
61 1+(29+50.2i)T+(1.13e51.96e5i)T2 1 + (-29 + 50.2i)T + (-1.13e5 - 1.96e5i)T^{2}
67 1+(446772.i)T+(1.50e5+2.60e5i)T2 1 + (-446 - 772. i)T + (-1.50e5 + 2.60e5i)T^{2}
71 1120T+3.57e5T2 1 - 120T + 3.57e5T^{2}
73 1+646T+3.89e5T2 1 + 646T + 3.89e5T^{2}
79 1+(584+1.01e3i)T+(2.46e54.26e5i)T2 1 + (-584 + 1.01e3i)T + (-2.46e5 - 4.26e5i)T^{2}
83 1+(366633.i)T+(2.85e54.95e5i)T2 1 + (366 - 633. i)T + (-2.85e5 - 4.95e5i)T^{2}
89 11.59e3T+7.04e5T2 1 - 1.59e3T + 7.04e5T^{2}
97 1+(97168.i)T+(4.56e57.90e5i)T2 1 + (97 - 168. i)T + (-4.56e5 - 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.957443219870005762100105087169, −8.559191282727349600772239756330, −7.41502357686374101558462391567, −6.49982454698800300044380698471, −5.80661186852532379381577915685, −5.30347347061979727225001769932, −3.73188987453581386795549364296, −3.04872974283581631192514055274, −2.16088284888887560299574468514, −0.69545023403847283485533183278, 0.78532214588856797542208634786, 1.54381115221371941539635474003, 3.23082141514231525811268273839, 3.78206363679394617051609795565, 4.81702235819604419058825297831, 5.73585567407966762357358433129, 6.66372111873311704582122268005, 7.50061521551121798022346313356, 7.87363911714823365878502758221, 9.355700014624795915165473210464

Graph of the ZZ-function along the critical line