L(s) = 1 | + (0.5 + 0.866i)5-s + (1.36 − 2.36i)7-s + (−0.866 + 1.5i)11-s + (−2.73 − 4.73i)13-s − 4.73·17-s − 4.46·19-s + (−1.73 − 3i)23-s + (−0.499 + 0.866i)25-s + (3.86 − 6.69i)29-s + (−2.96 − 5.13i)31-s + 2.73·35-s − 6.19·37-s + (5.59 + 9.69i)41-s + (−1.63 + 2.83i)43-s + (0.633 − 1.09i)47-s + ⋯ |
L(s) = 1 | + (0.223 + 0.387i)5-s + (0.516 − 0.894i)7-s + (−0.261 + 0.452i)11-s + (−0.757 − 1.31i)13-s − 1.14·17-s − 1.02·19-s + (−0.361 − 0.625i)23-s + (−0.0999 + 0.173i)25-s + (0.717 − 1.24i)29-s + (−0.532 − 0.922i)31-s + 0.461·35-s − 1.01·37-s + (0.874 + 1.51i)41-s + (−0.249 + 0.431i)43-s + (0.0924 − 0.160i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.8687091585\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8687091585\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-1.36 + 2.36i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (0.866 - 1.5i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (2.73 + 4.73i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 4.73T + 17T^{2} \) |
| 19 | \( 1 + 4.46T + 19T^{2} \) |
| 23 | \( 1 + (1.73 + 3i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.86 + 6.69i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.96 + 5.13i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 6.19T + 37T^{2} \) |
| 41 | \( 1 + (-5.59 - 9.69i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.63 - 2.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.633 + 1.09i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 7.26T + 53T^{2} \) |
| 59 | \( 1 + (-3.86 - 6.69i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2 + 3.46i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.19 + 5.53i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 11.1T + 71T^{2} \) |
| 73 | \( 1 + 0.196T + 73T^{2} \) |
| 79 | \( 1 + (-7.19 + 12.4i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.56 + 13.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 5.19T + 89T^{2} \) |
| 97 | \( 1 + (0.366 - 0.633i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.163042727640050207189985177528, −8.050602452242869110679719483496, −7.67132506504794727452899398801, −6.69864168969253685163444725337, −5.96123418118354997514726277689, −4.74538750713660518020921322290, −4.25582963538014378728228540957, −2.88621562624454042408312096977, −1.99345015097665182809793317432, −0.30579373806418640395386432754,
1.74964266690164482367419634496, 2.44486083734049427229520071585, 3.88363869172167148416973020818, 4.85727357440832217342430662627, 5.44453889950865859904593355420, 6.51502769146819388233763590148, 7.17152520255934050879230295800, 8.424400642135332920186195586445, 8.817539732618778862490038616539, 9.421741715490011484134839316324