Properties

Label 2-1620-9.7-c1-0-15
Degree $2$
Conductor $1620$
Sign $-0.642 + 0.766i$
Analytic cond. $12.9357$
Root an. cond. $3.59663$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 + 0.866i)5-s + (1.36 − 2.36i)7-s + (−0.866 + 1.5i)11-s + (−2.73 − 4.73i)13-s − 4.73·17-s − 4.46·19-s + (−1.73 − 3i)23-s + (−0.499 + 0.866i)25-s + (3.86 − 6.69i)29-s + (−2.96 − 5.13i)31-s + 2.73·35-s − 6.19·37-s + (5.59 + 9.69i)41-s + (−1.63 + 2.83i)43-s + (0.633 − 1.09i)47-s + ⋯
L(s)  = 1  + (0.223 + 0.387i)5-s + (0.516 − 0.894i)7-s + (−0.261 + 0.452i)11-s + (−0.757 − 1.31i)13-s − 1.14·17-s − 1.02·19-s + (−0.361 − 0.625i)23-s + (−0.0999 + 0.173i)25-s + (0.717 − 1.24i)29-s + (−0.532 − 0.922i)31-s + 0.461·35-s − 1.01·37-s + (0.874 + 1.51i)41-s + (−0.249 + 0.431i)43-s + (0.0924 − 0.160i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.642 + 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $-0.642 + 0.766i$
Analytic conductor: \(12.9357\)
Root analytic conductor: \(3.59663\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1620} (541, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1620,\ (\ :1/2),\ -0.642 + 0.766i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8687091585\)
\(L(\frac12)\) \(\approx\) \(0.8687091585\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (-0.5 - 0.866i)T \)
good7 \( 1 + (-1.36 + 2.36i)T + (-3.5 - 6.06i)T^{2} \)
11 \( 1 + (0.866 - 1.5i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (2.73 + 4.73i)T + (-6.5 + 11.2i)T^{2} \)
17 \( 1 + 4.73T + 17T^{2} \)
19 \( 1 + 4.46T + 19T^{2} \)
23 \( 1 + (1.73 + 3i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-3.86 + 6.69i)T + (-14.5 - 25.1i)T^{2} \)
31 \( 1 + (2.96 + 5.13i)T + (-15.5 + 26.8i)T^{2} \)
37 \( 1 + 6.19T + 37T^{2} \)
41 \( 1 + (-5.59 - 9.69i)T + (-20.5 + 35.5i)T^{2} \)
43 \( 1 + (1.63 - 2.83i)T + (-21.5 - 37.2i)T^{2} \)
47 \( 1 + (-0.633 + 1.09i)T + (-23.5 - 40.7i)T^{2} \)
53 \( 1 + 7.26T + 53T^{2} \)
59 \( 1 + (-3.86 - 6.69i)T + (-29.5 + 51.0i)T^{2} \)
61 \( 1 + (-2 + 3.46i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (3.19 + 5.53i)T + (-33.5 + 58.0i)T^{2} \)
71 \( 1 + 11.1T + 71T^{2} \)
73 \( 1 + 0.196T + 73T^{2} \)
79 \( 1 + (-7.19 + 12.4i)T + (-39.5 - 68.4i)T^{2} \)
83 \( 1 + (-7.56 + 13.0i)T + (-41.5 - 71.8i)T^{2} \)
89 \( 1 - 5.19T + 89T^{2} \)
97 \( 1 + (0.366 - 0.633i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.163042727640050207189985177528, −8.050602452242869110679719483496, −7.67132506504794727452899398801, −6.69864168969253685163444725337, −5.96123418118354997514726277689, −4.74538750713660518020921322290, −4.25582963538014378728228540957, −2.88621562624454042408312096977, −1.99345015097665182809793317432, −0.30579373806418640395386432754, 1.74964266690164482367419634496, 2.44486083734049427229520071585, 3.88363869172167148416973020818, 4.85727357440832217342430662627, 5.44453889950865859904593355420, 6.51502769146819388233763590148, 7.17152520255934050879230295800, 8.424400642135332920186195586445, 8.817539732618778862490038616539, 9.421741715490011484134839316324

Graph of the $Z$-function along the critical line