L(s) = 1 | + (−0.5 − 0.866i)5-s + (2 − 3.46i)7-s + (3 − 5.19i)11-s + (2 + 3.46i)13-s + 3·17-s − 7·19-s + (−4.5 − 7.79i)23-s + (−0.499 + 0.866i)25-s + (3.5 + 6.06i)31-s − 3.99·35-s + 2·37-s + (3 + 5.19i)41-s + (−1 + 1.73i)43-s + (−4.49 − 7.79i)49-s − 9·53-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (0.755 − 1.30i)7-s + (0.904 − 1.56i)11-s + (0.554 + 0.960i)13-s + 0.727·17-s − 1.60·19-s + (−0.938 − 1.62i)23-s + (−0.0999 + 0.173i)25-s + (0.628 + 1.08i)31-s − 0.676·35-s + 0.328·37-s + (0.468 + 0.811i)41-s + (−0.152 + 0.264i)43-s + (−0.642 − 1.11i)49-s − 1.23·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.173 + 0.984i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.700553425\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.700553425\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (-2 + 3.46i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 - 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 - 3T + 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + (4.5 + 7.79i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.5 - 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-3 - 5.19i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1 - 1.73i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 9T + 53T^{2} \) |
| 59 | \( 1 + (6 + 10.3i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 + 6.06i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 - 2T + 73T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.5 + 7.79i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 6T + 89T^{2} \) |
| 97 | \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.925267328207665251863436388048, −8.382808113225048940027046662983, −7.80960608491465966794122101785, −6.45904092928053239715152338579, −6.30165999614062061506762570897, −4.71475621974649754560240220270, −4.20470730540135368422914554810, −3.37562301298493495889530424173, −1.69144646155458567491023220668, −0.68854983713981989895663223638,
1.63395255269694657377759452445, 2.45650225168527685564653888210, 3.75920651264506611501649039411, 4.58863493562155675783775664763, 5.67840991366308643755309491143, 6.20998983155511659215035609453, 7.39802598763511752249860552070, 7.986123386515366497756441329888, 8.797360495766129746582394319092, 9.599073670647875580890225106251