L(s) = 1 | + (−0.5 − 0.866i)5-s + (−1 + 1.73i)7-s + (1.5 − 2.59i)11-s + (2 + 3.46i)13-s − 6·17-s − 7·19-s + (3 + 5.19i)23-s + (−0.499 + 0.866i)25-s + (1.5 − 2.59i)29-s + (−2.5 − 4.33i)31-s + 1.99·35-s − 4·37-s + (1.5 + 2.59i)41-s + (−4 + 6.92i)43-s + (1.50 + 2.59i)49-s + ⋯ |
L(s) = 1 | + (−0.223 − 0.387i)5-s + (−0.377 + 0.654i)7-s + (0.452 − 0.783i)11-s + (0.554 + 0.960i)13-s − 1.45·17-s − 1.60·19-s + (0.625 + 1.08i)23-s + (−0.0999 + 0.173i)25-s + (0.278 − 0.482i)29-s + (−0.449 − 0.777i)31-s + 0.338·35-s − 0.657·37-s + (0.234 + 0.405i)41-s + (−0.609 + 1.05i)43-s + (0.214 + 0.371i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.5263619472\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5263619472\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
good | 7 | \( 1 + (1 - 1.73i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.5 + 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 - 3.46i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 6T + 17T^{2} \) |
| 19 | \( 1 + 7T + 19T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 + 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 + 4.33i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 4T + 37T^{2} \) |
| 41 | \( 1 + (-1.5 - 2.59i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (4 - 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 6T + 53T^{2} \) |
| 59 | \( 1 + (1.5 + 2.59i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7 - 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 15T + 71T^{2} \) |
| 73 | \( 1 + 10T + 73T^{2} \) |
| 79 | \( 1 + (4 - 6.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 15T + 89T^{2} \) |
| 97 | \( 1 + (4 - 6.92i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.388187937159574100785106310293, −8.863952412991621595377410101591, −8.453013152085747049787730787258, −7.22126982589462017211327122472, −6.34169824154283675164755073432, −5.85606818802726019282396319318, −4.55282514854067970543481622296, −3.94269624297827293749372943913, −2.72049172470732676531179563086, −1.57282922326437926704894201169,
0.19473956684164253545383490904, 1.88065427957924262752637930011, 3.05430964810839070393835231660, 4.06077036208961075527255749196, 4.71624765719265718780979567555, 6.01723067690882447761689464330, 6.86970356997499493542957910144, 7.17175480690019950376715801518, 8.583795628938584984925678646112, 8.782409712783191266003475107892