L(s) = 1 | + (−2.5 + 4.33i)5-s + (14 + 24.2i)7-s + (−12 − 20.7i)11-s + (35 − 60.6i)13-s − 102·17-s + 20·19-s + (−36 + 62.3i)23-s + (−12.5 − 21.6i)25-s + (153 + 265. i)29-s + (68 − 117. i)31-s − 140·35-s − 214·37-s + (−75 + 129. i)41-s + (146 + 252. i)43-s + (−36 − 62.3i)47-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.328 − 0.569i)11-s + (0.746 − 1.29i)13-s − 1.45·17-s + 0.241·19-s + (−0.326 + 0.565i)23-s + (−0.100 − 0.173i)25-s + (0.979 + 1.69i)29-s + (0.393 − 0.682i)31-s − 0.676·35-s − 0.950·37-s + (−0.285 + 0.494i)41-s + (0.517 + 0.896i)43-s + (−0.111 − 0.193i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.9384547671\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9384547671\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (2.5 - 4.33i)T \) |
good | 7 | \( 1 + (-14 - 24.2i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (12 + 20.7i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-35 + 60.6i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 + 102T + 4.91e3T^{2} \) |
| 19 | \( 1 - 20T + 6.85e3T^{2} \) |
| 23 | \( 1 + (36 - 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-153 - 265. i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-68 + 117. i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 214T + 5.06e4T^{2} \) |
| 41 | \( 1 + (75 - 129. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-146 - 252. i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (36 + 62.3i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 414T + 1.48e5T^{2} \) |
| 59 | \( 1 + (372 - 644. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-209 - 361. i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (94 - 162. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 + 480T + 3.57e5T^{2} \) |
| 73 | \( 1 - 434T + 3.89e5T^{2} \) |
| 79 | \( 1 + (676 + 1.17e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (306 + 530. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 30T + 7.04e5T^{2} \) |
| 97 | \( 1 + (-143 - 247. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.110082105687472034628756895982, −8.540068900937614714903440636934, −8.025601777667353844490279152195, −6.98870363129822896151130558666, −5.96356101105182161632133712485, −5.44787944422769105583285265215, −4.48188421458624591445003424693, −3.21065100287582212912150922592, −2.54985571187617264689192164446, −1.30650910786750581001073580124,
0.20544300134166669683436031814, 1.37140440519123501488102033210, 2.31247405426533283606355487836, 4.01645323185992284302894424068, 4.28141120490515930946244434280, 5.14147078489080546128051608332, 6.55921888067703625589068338815, 6.95758157987109535433013259062, 7.991085724660757792613368335997, 8.547260882535689327380156975654