Properties

Label 2-1620-9.4-c3-0-6
Degree $2$
Conductor $1620$
Sign $-0.939 - 0.342i$
Analytic cond. $95.5830$
Root an. cond. $9.77666$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.5 + 4.33i)5-s + (14 + 24.2i)7-s + (−12 − 20.7i)11-s + (35 − 60.6i)13-s − 102·17-s + 20·19-s + (−36 + 62.3i)23-s + (−12.5 − 21.6i)25-s + (153 + 265. i)29-s + (68 − 117. i)31-s − 140·35-s − 214·37-s + (−75 + 129. i)41-s + (146 + 252. i)43-s + (−36 − 62.3i)47-s + ⋯
L(s)  = 1  + (−0.223 + 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.328 − 0.569i)11-s + (0.746 − 1.29i)13-s − 1.45·17-s + 0.241·19-s + (−0.326 + 0.565i)23-s + (−0.100 − 0.173i)25-s + (0.979 + 1.69i)29-s + (0.393 − 0.682i)31-s − 0.676·35-s − 0.950·37-s + (−0.285 + 0.494i)41-s + (0.517 + 0.896i)43-s + (−0.111 − 0.193i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $-0.939 - 0.342i$
Analytic conductor: \(95.5830\)
Root analytic conductor: \(9.77666\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1620} (1081, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1620,\ (\ :3/2),\ -0.939 - 0.342i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9384547671\)
\(L(\frac12)\) \(\approx\) \(0.9384547671\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (2.5 - 4.33i)T \)
good7 \( 1 + (-14 - 24.2i)T + (-171.5 + 297. i)T^{2} \)
11 \( 1 + (12 + 20.7i)T + (-665.5 + 1.15e3i)T^{2} \)
13 \( 1 + (-35 + 60.6i)T + (-1.09e3 - 1.90e3i)T^{2} \)
17 \( 1 + 102T + 4.91e3T^{2} \)
19 \( 1 - 20T + 6.85e3T^{2} \)
23 \( 1 + (36 - 62.3i)T + (-6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + (-153 - 265. i)T + (-1.21e4 + 2.11e4i)T^{2} \)
31 \( 1 + (-68 + 117. i)T + (-1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + 214T + 5.06e4T^{2} \)
41 \( 1 + (75 - 129. i)T + (-3.44e4 - 5.96e4i)T^{2} \)
43 \( 1 + (-146 - 252. i)T + (-3.97e4 + 6.88e4i)T^{2} \)
47 \( 1 + (36 + 62.3i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 - 414T + 1.48e5T^{2} \)
59 \( 1 + (372 - 644. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-209 - 361. i)T + (-1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (94 - 162. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 480T + 3.57e5T^{2} \)
73 \( 1 - 434T + 3.89e5T^{2} \)
79 \( 1 + (676 + 1.17e3i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + (306 + 530. i)T + (-2.85e5 + 4.95e5i)T^{2} \)
89 \( 1 - 30T + 7.04e5T^{2} \)
97 \( 1 + (-143 - 247. i)T + (-4.56e5 + 7.90e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.110082105687472034628756895982, −8.540068900937614714903440636934, −8.025601777667353844490279152195, −6.98870363129822896151130558666, −5.96356101105182161632133712485, −5.44787944422769105583285265215, −4.48188421458624591445003424693, −3.21065100287582212912150922592, −2.54985571187617264689192164446, −1.30650910786750581001073580124, 0.20544300134166669683436031814, 1.37140440519123501488102033210, 2.31247405426533283606355487836, 4.01645323185992284302894424068, 4.28141120490515930946244434280, 5.14147078489080546128051608332, 6.55921888067703625589068338815, 6.95758157987109535433013259062, 7.991085724660757792613368335997, 8.547260882535689327380156975654

Graph of the $Z$-function along the critical line