Properties

Label 2-1620-9.4-c3-0-6
Degree 22
Conductor 16201620
Sign 0.9390.342i-0.939 - 0.342i
Analytic cond. 95.583095.5830
Root an. cond. 9.776669.77666
Motivic weight 33
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−2.5 + 4.33i)5-s + (14 + 24.2i)7-s + (−12 − 20.7i)11-s + (35 − 60.6i)13-s − 102·17-s + 20·19-s + (−36 + 62.3i)23-s + (−12.5 − 21.6i)25-s + (153 + 265. i)29-s + (68 − 117. i)31-s − 140·35-s − 214·37-s + (−75 + 129. i)41-s + (146 + 252. i)43-s + (−36 − 62.3i)47-s + ⋯
L(s)  = 1  + (−0.223 + 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.328 − 0.569i)11-s + (0.746 − 1.29i)13-s − 1.45·17-s + 0.241·19-s + (−0.326 + 0.565i)23-s + (−0.100 − 0.173i)25-s + (0.979 + 1.69i)29-s + (0.393 − 0.682i)31-s − 0.676·35-s − 0.950·37-s + (−0.285 + 0.494i)41-s + (0.517 + 0.896i)43-s + (−0.111 − 0.193i)47-s + ⋯

Functional equation

Λ(s)=(1620s/2ΓC(s)L(s)=((0.9390.342i)Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(4-s) \end{aligned}
Λ(s)=(1620s/2ΓC(s+3/2)L(s)=((0.9390.342i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16201620    =    223452^{2} \cdot 3^{4} \cdot 5
Sign: 0.9390.342i-0.939 - 0.342i
Analytic conductor: 95.583095.5830
Root analytic conductor: 9.776669.77666
Motivic weight: 33
Rational: no
Arithmetic: yes
Character: χ1620(1081,)\chi_{1620} (1081, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1620, ( :3/2), 0.9390.342i)(2,\ 1620,\ (\ :3/2),\ -0.939 - 0.342i)

Particular Values

L(2)L(2) \approx 0.93845476710.9384547671
L(12)L(\frac12) \approx 0.93845476710.9384547671
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(2.54.33i)T 1 + (2.5 - 4.33i)T
good7 1+(1424.2i)T+(171.5+297.i)T2 1 + (-14 - 24.2i)T + (-171.5 + 297. i)T^{2}
11 1+(12+20.7i)T+(665.5+1.15e3i)T2 1 + (12 + 20.7i)T + (-665.5 + 1.15e3i)T^{2}
13 1+(35+60.6i)T+(1.09e31.90e3i)T2 1 + (-35 + 60.6i)T + (-1.09e3 - 1.90e3i)T^{2}
17 1+102T+4.91e3T2 1 + 102T + 4.91e3T^{2}
19 120T+6.85e3T2 1 - 20T + 6.85e3T^{2}
23 1+(3662.3i)T+(6.08e31.05e4i)T2 1 + (36 - 62.3i)T + (-6.08e3 - 1.05e4i)T^{2}
29 1+(153265.i)T+(1.21e4+2.11e4i)T2 1 + (-153 - 265. i)T + (-1.21e4 + 2.11e4i)T^{2}
31 1+(68+117.i)T+(1.48e42.57e4i)T2 1 + (-68 + 117. i)T + (-1.48e4 - 2.57e4i)T^{2}
37 1+214T+5.06e4T2 1 + 214T + 5.06e4T^{2}
41 1+(75129.i)T+(3.44e45.96e4i)T2 1 + (75 - 129. i)T + (-3.44e4 - 5.96e4i)T^{2}
43 1+(146252.i)T+(3.97e4+6.88e4i)T2 1 + (-146 - 252. i)T + (-3.97e4 + 6.88e4i)T^{2}
47 1+(36+62.3i)T+(5.19e4+8.99e4i)T2 1 + (36 + 62.3i)T + (-5.19e4 + 8.99e4i)T^{2}
53 1414T+1.48e5T2 1 - 414T + 1.48e5T^{2}
59 1+(372644.i)T+(1.02e51.77e5i)T2 1 + (372 - 644. i)T + (-1.02e5 - 1.77e5i)T^{2}
61 1+(209361.i)T+(1.13e5+1.96e5i)T2 1 + (-209 - 361. i)T + (-1.13e5 + 1.96e5i)T^{2}
67 1+(94162.i)T+(1.50e52.60e5i)T2 1 + (94 - 162. i)T + (-1.50e5 - 2.60e5i)T^{2}
71 1+480T+3.57e5T2 1 + 480T + 3.57e5T^{2}
73 1434T+3.89e5T2 1 - 434T + 3.89e5T^{2}
79 1+(676+1.17e3i)T+(2.46e5+4.26e5i)T2 1 + (676 + 1.17e3i)T + (-2.46e5 + 4.26e5i)T^{2}
83 1+(306+530.i)T+(2.85e5+4.95e5i)T2 1 + (306 + 530. i)T + (-2.85e5 + 4.95e5i)T^{2}
89 130T+7.04e5T2 1 - 30T + 7.04e5T^{2}
97 1+(143247.i)T+(4.56e5+7.90e5i)T2 1 + (-143 - 247. i)T + (-4.56e5 + 7.90e5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.110082105687472034628756895982, −8.540068900937614714903440636934, −8.025601777667353844490279152195, −6.98870363129822896151130558666, −5.96356101105182161632133712485, −5.44787944422769105583285265215, −4.48188421458624591445003424693, −3.21065100287582212912150922592, −2.54985571187617264689192164446, −1.30650910786750581001073580124, 0.20544300134166669683436031814, 1.37140440519123501488102033210, 2.31247405426533283606355487836, 4.01645323185992284302894424068, 4.28141120490515930946244434280, 5.14147078489080546128051608332, 6.55921888067703625589068338815, 6.95758157987109535433013259062, 7.991085724660757792613368335997, 8.547260882535689327380156975654

Graph of the ZZ-function along the critical line