L(s) = 1 | + (2.5 − 4.33i)5-s + (−16 − 27.7i)7-s + (18 + 31.1i)11-s + (5 − 8.66i)13-s + 78·17-s + 140·19-s + (−96 + 166. i)23-s + (−12.5 − 21.6i)25-s + (3 + 5.19i)29-s + (8 − 13.8i)31-s − 160·35-s − 34·37-s + (−195 + 337. i)41-s + (26 + 45.0i)43-s + (204 + 353. i)47-s + ⋯ |
L(s) = 1 | + (0.223 − 0.387i)5-s + (−0.863 − 1.49i)7-s + (0.493 + 0.854i)11-s + (0.106 − 0.184i)13-s + 1.11·17-s + 1.69·19-s + (−0.870 + 1.50i)23-s + (−0.100 − 0.173i)25-s + (0.0192 + 0.0332i)29-s + (0.0463 − 0.0802i)31-s − 0.772·35-s − 0.151·37-s + (−0.742 + 1.28i)41-s + (0.0922 + 0.159i)43-s + (0.633 + 1.09i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.939 + 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(2.194391073\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.194391073\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2.5 + 4.33i)T \) |
good | 7 | \( 1 + (16 + 27.7i)T + (-171.5 + 297. i)T^{2} \) |
| 11 | \( 1 + (-18 - 31.1i)T + (-665.5 + 1.15e3i)T^{2} \) |
| 13 | \( 1 + (-5 + 8.66i)T + (-1.09e3 - 1.90e3i)T^{2} \) |
| 17 | \( 1 - 78T + 4.91e3T^{2} \) |
| 19 | \( 1 - 140T + 6.85e3T^{2} \) |
| 23 | \( 1 + (96 - 166. i)T + (-6.08e3 - 1.05e4i)T^{2} \) |
| 29 | \( 1 + (-3 - 5.19i)T + (-1.21e4 + 2.11e4i)T^{2} \) |
| 31 | \( 1 + (-8 + 13.8i)T + (-1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + 34T + 5.06e4T^{2} \) |
| 41 | \( 1 + (195 - 337. i)T + (-3.44e4 - 5.96e4i)T^{2} \) |
| 43 | \( 1 + (-26 - 45.0i)T + (-3.97e4 + 6.88e4i)T^{2} \) |
| 47 | \( 1 + (-204 - 353. i)T + (-5.19e4 + 8.99e4i)T^{2} \) |
| 53 | \( 1 - 114T + 1.48e5T^{2} \) |
| 59 | \( 1 + (-258 + 446. i)T + (-1.02e5 - 1.77e5i)T^{2} \) |
| 61 | \( 1 + (-29 - 50.2i)T + (-1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-446 + 772. i)T + (-1.50e5 - 2.60e5i)T^{2} \) |
| 71 | \( 1 - 120T + 3.57e5T^{2} \) |
| 73 | \( 1 + 646T + 3.89e5T^{2} \) |
| 79 | \( 1 + (-584 - 1.01e3i)T + (-2.46e5 + 4.26e5i)T^{2} \) |
| 83 | \( 1 + (366 + 633. i)T + (-2.85e5 + 4.95e5i)T^{2} \) |
| 89 | \( 1 - 1.59e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + (97 + 168. i)T + (-4.56e5 + 7.90e5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.355700014624795915165473210464, −7.87363911714823365878502758221, −7.50061521551121798022346313356, −6.66372111873311704582122268005, −5.73585567407966762357358433129, −4.81702235819604419058825297831, −3.78206363679394617051609795565, −3.23082141514231525811268273839, −1.54381115221371941539635474003, −0.78532214588856797542208634786,
0.69545023403847283485533183278, 2.16088284888887560299574468514, 3.04872974283581631192514055274, 3.73188987453581386795549364296, 5.30347347061979727225001769932, 5.80661186852532379381577915685, 6.49982454698800300044380698471, 7.41502357686374101558462391567, 8.559191282727349600772239756330, 8.957443219870005762100105087169