L(s) = 1 | + (−0.5 + 0.866i)5-s + (2 + 3.46i)7-s + (−1.5 − 2.59i)11-s + (2 − 3.46i)13-s + 5·19-s + (3 − 5.19i)23-s + (−0.499 − 0.866i)25-s + (4.5 + 7.79i)29-s + (−2.5 + 4.33i)31-s − 3.99·35-s + 2·37-s + (4.5 − 7.79i)41-s + (5 + 8.66i)43-s + (3 + 5.19i)47-s + (−4.49 + 7.79i)49-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.452 − 0.783i)11-s + (0.554 − 0.960i)13-s + 1.14·19-s + (0.625 − 1.08i)23-s + (−0.0999 − 0.173i)25-s + (0.835 + 1.44i)29-s + (−0.449 + 0.777i)31-s − 0.676·35-s + 0.328·37-s + (0.702 − 1.21i)41-s + (0.762 + 1.32i)43-s + (0.437 + 0.757i)47-s + (−0.642 + 1.11i)49-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(0.766−0.642i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(0.766−0.642i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
0.766−0.642i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(1081,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), 0.766−0.642i)
|
Particular Values
L(1) |
≈ |
1.839905429 |
L(21) |
≈ |
1.839905429 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.5−0.866i)T |
good | 7 | 1+(−2−3.46i)T+(−3.5+6.06i)T2 |
| 11 | 1+(1.5+2.59i)T+(−5.5+9.52i)T2 |
| 13 | 1+(−2+3.46i)T+(−6.5−11.2i)T2 |
| 17 | 1+17T2 |
| 19 | 1−5T+19T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.5−7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.5−4.33i)T+(−15.5−26.8i)T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+(−4.5+7.79i)T+(−20.5−35.5i)T2 |
| 43 | 1+(−5−8.66i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−3−5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(4.5−7.79i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5−8.66i)T+(−30.5+52.8i)T2 |
| 67 | 1+(1−1.73i)T+(−33.5−58.0i)T2 |
| 71 | 1−3T+71T2 |
| 73 | 1+4T+73T2 |
| 79 | 1+(−2−3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1+(3+5.19i)T+(−41.5+71.8i)T2 |
| 89 | 1+9T+89T2 |
| 97 | 1+(1+1.73i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.248839847856189721985601763268, −8.638352095944642759694787610973, −8.035605832404872760247455687383, −7.19097435233571141372816542410, −6.02369427964775799546206805766, −5.48974204522978763605888325413, −4.65721685080376102509392771859, −3.17044565313194721402684349304, −2.71347237714298722036415788905, −1.14293069379841707352992722486,
0.895295443662450554357463963374, 1.96205772729715479995513566826, 3.50832141578682170466398750906, 4.37140213572430849281427805456, 4.92972423493345658179987439707, 6.06673908830539985331608599105, 7.21863006699407120818014829366, 7.58586718954105188407062594631, 8.364529587754795985425252141992, 9.509584145005958275689704830079