L(s) = 1 | + (−0.5 + 0.866i)5-s + (2 + 3.46i)7-s + (−1.5 − 2.59i)11-s + (2 − 3.46i)13-s + 5·19-s + (3 − 5.19i)23-s + (−0.499 − 0.866i)25-s + (4.5 + 7.79i)29-s + (−2.5 + 4.33i)31-s − 3.99·35-s + 2·37-s + (4.5 − 7.79i)41-s + (5 + 8.66i)43-s + (3 + 5.19i)47-s + (−4.49 + 7.79i)49-s + ⋯ |
L(s) = 1 | + (−0.223 + 0.387i)5-s + (0.755 + 1.30i)7-s + (−0.452 − 0.783i)11-s + (0.554 − 0.960i)13-s + 1.14·19-s + (0.625 − 1.08i)23-s + (−0.0999 − 0.173i)25-s + (0.835 + 1.44i)29-s + (−0.449 + 0.777i)31-s − 0.676·35-s + 0.328·37-s + (0.702 − 1.21i)41-s + (0.762 + 1.32i)43-s + (0.437 + 0.757i)47-s + (−0.642 + 1.11i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.839905429\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.839905429\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.5 - 0.866i)T \) |
good | 7 | \( 1 + (-2 - 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.5 + 2.59i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-2 + 3.46i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 17T^{2} \) |
| 19 | \( 1 - 5T + 19T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-4.5 - 7.79i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (2.5 - 4.33i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + (-4.5 + 7.79i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3 - 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (4.5 - 7.79i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5 - 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 3T + 71T^{2} \) |
| 73 | \( 1 + 4T + 73T^{2} \) |
| 79 | \( 1 + (-2 - 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (3 + 5.19i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + 9T + 89T^{2} \) |
| 97 | \( 1 + (1 + 1.73i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.248839847856189721985601763268, −8.638352095944642759694787610973, −8.035605832404872760247455687383, −7.19097435233571141372816542410, −6.02369427964775799546206805766, −5.48974204522978763605888325413, −4.65721685080376102509392771859, −3.17044565313194721402684349304, −2.71347237714298722036415788905, −1.14293069379841707352992722486,
0.895295443662450554357463963374, 1.96205772729715479995513566826, 3.50832141578682170466398750906, 4.37140213572430849281427805456, 4.92972423493345658179987439707, 6.06673908830539985331608599105, 7.21863006699407120818014829366, 7.58586718954105188407062594631, 8.364529587754795985425252141992, 9.509584145005958275689704830079