Properties

Label 2-1620-45.7-c0-0-0
Degree $2$
Conductor $1620$
Sign $0.989 + 0.144i$
Analytic cond. $0.808485$
Root an. cond. $0.899158$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)5-s + (1.36 − 0.366i)7-s + (0.5 − 0.866i)11-s + (−1 − i)17-s + i·19-s + (1.36 + 0.366i)23-s + (0.499 − 0.866i)25-s + (0.866 + 0.5i)29-s + (−0.5 − 0.866i)31-s + (−0.999 + i)35-s + (0.5 + 0.866i)41-s + (0.866 − 0.5i)49-s + (1 − i)53-s + 0.999i·55-s + (−0.866 + 0.5i)59-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)5-s + (1.36 − 0.366i)7-s + (0.5 − 0.866i)11-s + (−1 − i)17-s + i·19-s + (1.36 + 0.366i)23-s + (0.499 − 0.866i)25-s + (0.866 + 0.5i)29-s + (−0.5 − 0.866i)31-s + (−0.999 + i)35-s + (0.5 + 0.866i)41-s + (0.866 − 0.5i)49-s + (1 − i)53-s + 0.999i·55-s + (−0.866 + 0.5i)59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.989 + 0.144i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $0.989 + 0.144i$
Analytic conductor: \(0.808485\)
Root analytic conductor: \(0.899158\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1620} (217, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1620,\ (\ :0),\ 0.989 + 0.144i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.142787008\)
\(L(\frac12)\) \(\approx\) \(1.142787008\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.866 - 0.5i)T \)
good7 \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
13 \( 1 + (0.866 + 0.5i)T^{2} \)
17 \( 1 + (1 + i)T + iT^{2} \)
19 \( 1 - iT - T^{2} \)
23 \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \)
29 \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \)
37 \( 1 + iT^{2} \)
41 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
43 \( 1 + (-0.866 + 0.5i)T^{2} \)
47 \( 1 + (0.866 - 0.5i)T^{2} \)
53 \( 1 + (-1 + i)T - iT^{2} \)
59 \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T^{2} \)
67 \( 1 + (0.366 - 1.36i)T + (-0.866 - 0.5i)T^{2} \)
71 \( 1 - T + T^{2} \)
73 \( 1 + (-1 + i)T - iT^{2} \)
79 \( 1 + (0.5 + 0.866i)T^{2} \)
83 \( 1 + (-0.866 + 0.5i)T^{2} \)
89 \( 1 - iT - T^{2} \)
97 \( 1 + (0.866 - 0.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.463406605176236402091612393858, −8.591212676540333590995160135584, −8.006629972995939352247845306014, −7.24764986247075998111312739145, −6.53419131199815486750866616118, −5.33612847460532026130606893651, −4.50670400782096265321526619677, −3.71159123079632548022904529547, −2.63982610821641598504701724611, −1.15008247787606334460081597165, 1.33007660637035564411500531200, 2.47011711810938042525988587645, 3.94237527514091366412939739054, 4.67501408808301547431104228098, 5.16245144681585178975938557281, 6.56114341550822524922673303922, 7.27860524952347578626669165667, 8.128900819292203494607398730448, 8.787342331340225730153368429425, 9.257483636899931633157939478719

Graph of the $Z$-function along the critical line