L(s) = 1 | + i·2-s − 4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 + 0.866i)10-s + 16-s + i·17-s − 1.73i·19-s + (−0.866 + 0.5i)20-s + (0.866 + 1.5i)23-s + (0.499 − 0.866i)25-s + (1.5 − 0.866i)31-s + i·32-s − 34-s + 1.73·38-s + ⋯ |
L(s) = 1 | + i·2-s − 4-s + (0.866 − 0.5i)5-s − i·8-s + (0.5 + 0.866i)10-s + 16-s + i·17-s − 1.73i·19-s + (−0.866 + 0.5i)20-s + (0.866 + 1.5i)23-s + (0.499 − 0.866i)25-s + (1.5 − 0.866i)31-s + i·32-s − 34-s + 1.73·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.642 - 0.766i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.189646767\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.189646767\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.866 + 0.5i)T \) |
good | 7 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + 1.73iT - T^{2} \) |
| 23 | \( 1 + (-0.866 - 1.5i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (-1.5 + 0.866i)T + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (0.866 - 1.5i)T + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.446550360166492978141653216512, −8.896884107671611470810025177958, −8.141423354622622129630523591242, −7.20730112763425922730718025830, −6.43831203277864237896773909676, −5.68526014918180124435450259358, −4.95648371716187288054778374371, −4.13788599992158762206052105524, −2.78164025556725564333853568695, −1.21572576887448141047538343544,
1.32091325848621284155959167961, 2.49858949313619016988106553230, 3.18234470034622892115425425928, 4.38597471077108214470574992390, 5.24645850017407491451162262342, 6.11578502090099886394843767376, 7.03178342043208984133608340363, 8.156247193233805276416541505646, 8.884610130908635367295614016158, 9.713772686583426004309441870354