Properties

Label 2-1620-180.139-c0-0-1
Degree $2$
Conductor $1620$
Sign $0.342 - 0.939i$
Analytic cond. $0.808485$
Root an. cond. $0.899158$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s − 0.999·10-s + (−0.5 − 0.866i)16-s + 2i·17-s + (0.866 − 0.499i)20-s + (0.499 + 0.866i)25-s + (0.866 + 0.499i)32-s + (−1 − 1.73i)34-s + (−0.499 + 0.866i)40-s + (0.5 − 0.866i)49-s + (−0.866 − 0.499i)50-s − 2i·53-s + ⋯
L(s)  = 1  + (−0.866 + 0.5i)2-s + (0.499 − 0.866i)4-s + (0.866 + 0.5i)5-s + 0.999i·8-s − 0.999·10-s + (−0.5 − 0.866i)16-s + 2i·17-s + (0.866 − 0.499i)20-s + (0.499 + 0.866i)25-s + (0.866 + 0.499i)32-s + (−1 − 1.73i)34-s + (−0.499 + 0.866i)40-s + (0.5 − 0.866i)49-s + (−0.866 − 0.499i)50-s − 2i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.342 - 0.939i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1620\)    =    \(2^{2} \cdot 3^{4} \cdot 5\)
Sign: $0.342 - 0.939i$
Analytic conductor: \(0.808485\)
Root analytic conductor: \(0.899158\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1620} (919, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1620,\ (\ :0),\ 0.342 - 0.939i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8636242292\)
\(L(\frac12)\) \(\approx\) \(0.8636242292\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.866 - 0.5i)T \)
3 \( 1 \)
5 \( 1 + (-0.866 - 0.5i)T \)
good7 \( 1 + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (0.5 - 0.866i)T^{2} \)
13 \( 1 + (0.5 + 0.866i)T^{2} \)
17 \( 1 - 2iT - T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (-0.5 + 0.866i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + (-0.5 - 0.866i)T^{2} \)
43 \( 1 + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.5 + 0.866i)T^{2} \)
53 \( 1 + 2iT - T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (-0.5 - 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (-0.5 + 0.866i)T^{2} \)
89 \( 1 + T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.847406325836323081363157263951, −8.829656546490008597581083724643, −8.312396836023272218462924762988, −7.31976441497390038402296720184, −6.54032462287971348434811516737, −5.94122735338285999926038035738, −5.17139285300270339867545575216, −3.76447165701797227382057503573, −2.41088543567174479381565954539, −1.51862118490874178132704767725, 0.975806822276998642897698751818, 2.23628494430828299140949990625, 3.04657426948438142028518282849, 4.39507910584475596076420157303, 5.31831640933861909176935274380, 6.36349885480488703167579885362, 7.19779853062702864047031644588, 7.971698897528377297792250639286, 8.990471035672028830757730360539, 9.345707772640833635153906141490

Graph of the $Z$-function along the critical line