L(s) = 1 | + (−4.89 + 2.82i)2-s + (15.9 − 27.7i)4-s + (−180. − 104. i)5-s + (−2.09 − 3.63i)7-s + 181. i·8-s + 1.17e3·10-s + (−1.95e3 + 1.13e3i)11-s + (−1.42e3 + 2.45e3i)13-s + (20.5 + 11.8i)14-s + (−512. − 886. i)16-s + 1.96e3i·17-s − 281.·19-s + (−5.77e3 + 3.33e3i)20-s + (6.39e3 − 1.10e4i)22-s + (−1.45e4 − 8.37e3i)23-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (0.249 − 0.433i)4-s + (−1.44 − 0.834i)5-s + (−0.00611 − 0.0105i)7-s + 0.353i·8-s + 1.17·10-s + (−1.47 + 0.849i)11-s + (−0.646 + 1.11i)13-s + (0.00749 + 0.00432i)14-s + (−0.125 − 0.216i)16-s + 0.400i·17-s − 0.0410·19-s + (−0.722 + 0.417i)20-s + (0.600 − 1.04i)22-s + (−1.19 − 0.688i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.996 + 0.0871i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (0.996 + 0.0871i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.4822505961\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4822505961\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (4.89 - 2.82i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (180. + 104. i)T + (7.81e3 + 1.35e4i)T^{2} \) |
| 7 | \( 1 + (2.09 + 3.63i)T + (-5.88e4 + 1.01e5i)T^{2} \) |
| 11 | \( 1 + (1.95e3 - 1.13e3i)T + (8.85e5 - 1.53e6i)T^{2} \) |
| 13 | \( 1 + (1.42e3 - 2.45e3i)T + (-2.41e6 - 4.18e6i)T^{2} \) |
| 17 | \( 1 - 1.96e3iT - 2.41e7T^{2} \) |
| 19 | \( 1 + 281.T + 4.70e7T^{2} \) |
| 23 | \( 1 + (1.45e4 + 8.37e3i)T + (7.40e7 + 1.28e8i)T^{2} \) |
| 29 | \( 1 + (-3.21e4 + 1.85e4i)T + (2.97e8 - 5.15e8i)T^{2} \) |
| 31 | \( 1 + (-1.23e4 + 2.13e4i)T + (-4.43e8 - 7.68e8i)T^{2} \) |
| 37 | \( 1 + 1.70e4T + 2.56e9T^{2} \) |
| 41 | \( 1 + (1.00e5 + 5.81e4i)T + (2.37e9 + 4.11e9i)T^{2} \) |
| 43 | \( 1 + (-1.53e4 - 2.65e4i)T + (-3.16e9 + 5.47e9i)T^{2} \) |
| 47 | \( 1 + (6.72e4 - 3.88e4i)T + (5.38e9 - 9.33e9i)T^{2} \) |
| 53 | \( 1 - 1.38e5iT - 2.21e10T^{2} \) |
| 59 | \( 1 + (-1.32e5 - 7.64e4i)T + (2.10e10 + 3.65e10i)T^{2} \) |
| 61 | \( 1 + (-8.06e3 - 1.39e4i)T + (-2.57e10 + 4.46e10i)T^{2} \) |
| 67 | \( 1 + (-2.37e5 + 4.11e5i)T + (-4.52e10 - 7.83e10i)T^{2} \) |
| 71 | \( 1 + 1.50e5iT - 1.28e11T^{2} \) |
| 73 | \( 1 - 3.31e5T + 1.51e11T^{2} \) |
| 79 | \( 1 + (-4.48e5 - 7.76e5i)T + (-1.21e11 + 2.10e11i)T^{2} \) |
| 83 | \( 1 + (-8.18e5 + 4.72e5i)T + (1.63e11 - 2.83e11i)T^{2} \) |
| 89 | \( 1 - 7.90e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (6.96e5 + 1.20e6i)T + (-4.16e11 + 7.21e11i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.92340554756884448097137387681, −10.60327149322312741269621021667, −9.626269053975290131129138193692, −8.314667518564863423156928215001, −7.87040197781803990444301036326, −6.75213764551627432406953410065, −5.03651258072726456916882753466, −4.18627239404344035224339477731, −2.19924852971607551157292036424, −0.39241375109515108283754120049,
0.47457504687966383289599796479, 2.73196538470891222377130174115, 3.45681939014794562178648851978, 5.14841912713564858014791993336, 6.84333136132732226748401012423, 7.929694605775753604340303948545, 8.273561320062938590824129167710, 10.11635845462393577201045870143, 10.66503051696145987182701205252, 11.63172722478951559854310520425