Properties

Label 2-162-9.5-c12-0-4
Degree $2$
Conductor $162$
Sign $0.766 - 0.642i$
Analytic cond. $148.066$
Root an. cond. $12.1682$
Motivic weight $12$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (39.1 − 22.6i)2-s + (1.02e3 − 1.77e3i)4-s + (−1.25e4 − 7.23e3i)5-s + (−4.86e4 − 8.42e4i)7-s − 9.26e4i·8-s − 6.54e5·10-s + (−1.20e6 + 6.96e5i)11-s + (3.01e6 − 5.21e6i)13-s + (−3.81e6 − 2.20e6i)14-s + (−2.09e6 − 3.63e6i)16-s + 2.96e7i·17-s − 4.55e7·19-s + (−2.56e7 + 1.48e7i)20-s + (−3.15e7 + 5.46e7i)22-s + (−8.46e7 − 4.88e7i)23-s + ⋯
L(s)  = 1  + (0.612 − 0.353i)2-s + (0.249 − 0.433i)4-s + (−0.801 − 0.462i)5-s + (−0.413 − 0.715i)7-s − 0.353i·8-s − 0.654·10-s + (−0.681 + 0.393i)11-s + (0.623 − 1.08i)13-s + (−0.506 − 0.292i)14-s + (−0.125 − 0.216i)16-s + 1.22i·17-s − 0.967·19-s + (−0.400 + 0.231i)20-s + (−0.278 + 0.481i)22-s + (−0.571 − 0.330i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(13-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+6) \, L(s)\cr =\mathstrut & (0.766 - 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $0.766 - 0.642i$
Analytic conductor: \(148.066\)
Root analytic conductor: \(12.1682\)
Motivic weight: \(12\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :6),\ 0.766 - 0.642i)\)

Particular Values

\(L(\frac{13}{2})\) \(\approx\) \(0.7064198888\)
\(L(\frac12)\) \(\approx\) \(0.7064198888\)
\(L(7)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-39.1 + 22.6i)T \)
3 \( 1 \)
good5 \( 1 + (1.25e4 + 7.23e3i)T + (1.22e8 + 2.11e8i)T^{2} \)
7 \( 1 + (4.86e4 + 8.42e4i)T + (-6.92e9 + 1.19e10i)T^{2} \)
11 \( 1 + (1.20e6 - 6.96e5i)T + (1.56e12 - 2.71e12i)T^{2} \)
13 \( 1 + (-3.01e6 + 5.21e6i)T + (-1.16e13 - 2.01e13i)T^{2} \)
17 \( 1 - 2.96e7iT - 5.82e14T^{2} \)
19 \( 1 + 4.55e7T + 2.21e15T^{2} \)
23 \( 1 + (8.46e7 + 4.88e7i)T + (1.09e16 + 1.89e16i)T^{2} \)
29 \( 1 + (4.17e8 - 2.41e8i)T + (1.76e17 - 3.06e17i)T^{2} \)
31 \( 1 + (-2.34e8 + 4.06e8i)T + (-3.93e17 - 6.82e17i)T^{2} \)
37 \( 1 + 4.39e9T + 6.58e18T^{2} \)
41 \( 1 + (-4.92e9 - 2.84e9i)T + (1.12e19 + 1.95e19i)T^{2} \)
43 \( 1 + (2.15e9 + 3.72e9i)T + (-1.99e19 + 3.46e19i)T^{2} \)
47 \( 1 + (3.32e9 - 1.91e9i)T + (5.80e19 - 1.00e20i)T^{2} \)
53 \( 1 + 2.52e10iT - 4.91e20T^{2} \)
59 \( 1 + (-5.60e10 - 3.23e10i)T + (8.89e20 + 1.54e21i)T^{2} \)
61 \( 1 + (-1.61e10 - 2.79e10i)T + (-1.32e21 + 2.29e21i)T^{2} \)
67 \( 1 + (2.90e10 - 5.03e10i)T + (-4.09e21 - 7.08e21i)T^{2} \)
71 \( 1 + 3.98e10iT - 1.64e22T^{2} \)
73 \( 1 - 1.63e11T + 2.29e22T^{2} \)
79 \( 1 + (-9.35e10 - 1.62e11i)T + (-2.95e22 + 5.11e22i)T^{2} \)
83 \( 1 + (-6.69e10 + 3.86e10i)T + (5.34e22 - 9.25e22i)T^{2} \)
89 \( 1 + 9.19e11iT - 2.46e23T^{2} \)
97 \( 1 + (-7.16e11 - 1.24e12i)T + (-3.46e23 + 6.00e23i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.62958389157109264445725485841, −10.23715309013657528048797145124, −8.561728978594600957666200930122, −7.75995566184847263981977738992, −6.50256522663275094873094257307, −5.37013702892732815903309693951, −4.13922560291901481495103955037, −3.56097806217094319545440645465, −2.11238673076294519230100454452, −0.75405480435737398067853231585, 0.14322445744580921308051641097, 2.08266574216987689152085675806, 3.16550482756318528916415777509, 4.08733331701686109719937164485, 5.33329316561267564111296466402, 6.38735771749444099200290028367, 7.29676565620927375741874566510, 8.359196474013678492412674743551, 9.363779168931519664947201937989, 10.86125789126235540402410311977

Graph of the $Z$-function along the critical line