Properties

Label 2-162-9.4-c7-0-23
Degree $2$
Conductor $162$
Sign $-0.766 + 0.642i$
Analytic cond. $50.6063$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4 − 6.92i)2-s + (−31.9 + 55.4i)4-s + (156 − 270. i)5-s + (−161.5 − 279. i)7-s + 511.·8-s − 2.49e3·10-s + (1.86e3 + 3.22e3i)11-s + (7.08e3 − 1.22e4i)13-s + (−1.29e3 + 2.23e3i)14-s + (−2.04e3 − 3.54e3i)16-s − 1.59e4·17-s + 2.24e4·19-s + (9.98e3 + 1.72e4i)20-s + (1.48e4 − 2.57e4i)22-s + (2.88e4 − 5.00e4i)23-s + ⋯
L(s)  = 1  + (−0.353 − 0.612i)2-s + (−0.249 + 0.433i)4-s + (0.558 − 0.966i)5-s + (−0.177 − 0.308i)7-s + 0.353·8-s − 0.789·10-s + (0.421 + 0.729i)11-s + (0.894 − 1.55i)13-s + (−0.125 + 0.217i)14-s + (−0.125 − 0.216i)16-s − 0.785·17-s + 0.749·19-s + (0.279 + 0.483i)20-s + (0.297 − 0.516i)22-s + (0.495 − 0.857i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.766 + 0.642i$
Analytic conductor: \(50.6063\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :7/2),\ -0.766 + 0.642i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.764040983\)
\(L(\frac12)\) \(\approx\) \(1.764040983\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4 + 6.92i)T \)
3 \( 1 \)
good5 \( 1 + (-156 + 270. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (161.5 + 279. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (-1.86e3 - 3.22e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (-7.08e3 + 1.22e4i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 + 1.59e4T + 4.10e8T^{2} \)
19 \( 1 - 2.24e4T + 8.93e8T^{2} \)
23 \( 1 + (-2.88e4 + 5.00e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (-8.33e4 - 1.44e5i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (4.74e4 - 8.21e4i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 - 4.53e5T + 9.49e10T^{2} \)
41 \( 1 + (-3.13e5 + 5.43e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (-2.12e4 - 3.67e4i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (6.17e5 + 1.06e6i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + 1.07e5T + 1.17e12T^{2} \)
59 \( 1 + (1.23e6 - 2.14e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (1.43e6 + 2.48e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (7.50e5 - 1.29e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 + 4.73e6T + 9.09e12T^{2} \)
73 \( 1 + 8.51e4T + 1.10e13T^{2} \)
79 \( 1 + (-5.90e5 - 1.02e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (5.58e5 + 9.66e5i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 + 9.36e6T + 4.42e13T^{2} \)
97 \( 1 + (-1.01e6 - 1.76e6i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.98542177571393625142763392530, −10.16641145952829371959858174007, −9.138972003382514074366718933482, −8.410257668707143090069459493226, −7.05972311863445637643009704978, −5.58249743083386214584894121231, −4.45548341869070580586840537060, −3.04798904711665549597888295593, −1.50676143875448754014717157756, −0.58559212633771622085649779422, 1.31333493666739910456883580042, 2.79753116843316276213976782823, 4.32006346023210792978053981346, 6.11294517695656758348573004458, 6.39884913741107267959060441681, 7.69969791124155265410332606926, 9.050731658935884637861966736338, 9.602918432552615002593038358053, 11.00984574633140183309357516436, 11.54982270745521962193746299441

Graph of the $Z$-function along the critical line