Properties

Label 2-162-9.4-c7-0-2
Degree $2$
Conductor $162$
Sign $-0.766 + 0.642i$
Analytic cond. $50.6063$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4 + 6.92i)2-s + (−31.9 + 55.4i)4-s + (−82.5 + 142. i)5-s + (254 + 439. i)7-s − 511.·8-s − 1.32e3·10-s + (1.51e3 + 2.61e3i)11-s + (−2.51e3 + 4.36e3i)13-s + (−2.03e3 + 3.51e3i)14-s + (−2.04e3 − 3.54e3i)16-s + 3.18e3·17-s + 1.50e3·19-s + (−5.28e3 − 9.14e3i)20-s + (−1.20e4 + 2.09e4i)22-s + (−3.78e4 + 6.54e4i)23-s + ⋯
L(s)  = 1  + (0.353 + 0.612i)2-s + (−0.249 + 0.433i)4-s + (−0.295 + 0.511i)5-s + (0.279 + 0.484i)7-s − 0.353·8-s − 0.417·10-s + (0.342 + 0.593i)11-s + (−0.318 + 0.550i)13-s + (−0.197 + 0.342i)14-s + (−0.125 − 0.216i)16-s + 0.157·17-s + 0.0504·19-s + (−0.147 − 0.255i)20-s + (−0.242 + 0.419i)22-s + (−0.647 + 1.12i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.766 + 0.642i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.766 + 0.642i$
Analytic conductor: \(50.6063\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (109, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :7/2),\ -0.766 + 0.642i)\)

Particular Values

\(L(4)\) \(\approx\) \(1.093549655\)
\(L(\frac12)\) \(\approx\) \(1.093549655\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4 - 6.92i)T \)
3 \( 1 \)
good5 \( 1 + (82.5 - 142. i)T + (-3.90e4 - 6.76e4i)T^{2} \)
7 \( 1 + (-254 - 439. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 + (-1.51e3 - 2.61e3i)T + (-9.74e6 + 1.68e7i)T^{2} \)
13 \( 1 + (2.51e3 - 4.36e3i)T + (-3.13e7 - 5.43e7i)T^{2} \)
17 \( 1 - 3.18e3T + 4.10e8T^{2} \)
19 \( 1 - 1.50e3T + 8.93e8T^{2} \)
23 \( 1 + (3.78e4 - 6.54e4i)T + (-1.70e9 - 2.94e9i)T^{2} \)
29 \( 1 + (4.13e4 + 7.15e4i)T + (-8.62e9 + 1.49e10i)T^{2} \)
31 \( 1 + (-8.74e4 + 1.51e5i)T + (-1.37e10 - 2.38e10i)T^{2} \)
37 \( 1 + 3.23e5T + 9.49e10T^{2} \)
41 \( 1 + (1.54e5 - 2.66e5i)T + (-9.73e10 - 1.68e11i)T^{2} \)
43 \( 1 + (1.68e5 + 2.91e5i)T + (-1.35e11 + 2.35e11i)T^{2} \)
47 \( 1 + (1.91e5 + 3.31e5i)T + (-2.53e11 + 4.38e11i)T^{2} \)
53 \( 1 + 7.60e5T + 1.17e12T^{2} \)
59 \( 1 + (1.11e6 - 1.92e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (1.12e6 + 1.94e6i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (7.36e5 - 1.27e6i)T + (-3.03e12 - 5.24e12i)T^{2} \)
71 \( 1 - 5.00e6T + 9.09e12T^{2} \)
73 \( 1 + 5.89e6T + 1.10e13T^{2} \)
79 \( 1 + (3.51e6 + 6.08e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (1.32e6 + 2.29e6i)T + (-1.35e13 + 2.35e13i)T^{2} \)
89 \( 1 - 6.77e6T + 4.42e13T^{2} \)
97 \( 1 + (8.08e6 + 1.40e7i)T + (-4.03e13 + 6.99e13i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.03719472501806546594764978369, −11.49773930708098193623026249306, −10.02156404243106517775191882813, −9.007174433624170436474232443470, −7.78593507555900304019491927372, −6.96327138131373984480491156613, −5.80945513924447681515046601577, −4.61741762966938221303184905023, −3.41020324991272017036920459122, −1.89341792425272311339430149905, 0.25687553343924753765171036965, 1.37365187520319000128052991652, 2.98527733613566380975822936027, 4.20613829575332397818940125706, 5.18812855186794106330884525122, 6.54307534890021345054734628436, 7.991495633654315643108948712125, 8.892118997898237631337935538337, 10.19578830033338212369629005631, 10.93820172749231544170830503072

Graph of the $Z$-function along the critical line