Properties

Label 2-162-81.25-c1-0-4
Degree $2$
Conductor $162$
Sign $0.593 + 0.805i$
Analytic cond. $1.29357$
Root an. cond. $1.13735$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.893 − 0.448i)2-s + (−1.57 + 0.714i)3-s + (0.597 − 0.802i)4-s + (0.891 − 2.97i)5-s + (−1.08 + 1.34i)6-s + (0.275 − 0.638i)7-s + (0.173 − 0.984i)8-s + (1.97 − 2.25i)9-s + (−0.539 − 3.06i)10-s + (5.37 + 1.27i)11-s + (−0.368 + 1.69i)12-s + (−2.73 + 1.79i)13-s + (−0.0404 − 0.693i)14-s + (0.721 + 5.33i)15-s + (−0.286 − 0.957i)16-s + (−4.35 − 1.58i)17-s + ⋯
L(s)  = 1  + (0.631 − 0.317i)2-s + (−0.910 + 0.412i)3-s + (0.298 − 0.401i)4-s + (0.398 − 1.33i)5-s + (−0.444 + 0.549i)6-s + (0.104 − 0.241i)7-s + (0.0613 − 0.348i)8-s + (0.659 − 0.751i)9-s + (−0.170 − 0.967i)10-s + (1.62 + 0.384i)11-s + (−0.106 + 0.488i)12-s + (−0.757 + 0.498i)13-s + (−0.0107 − 0.185i)14-s + (0.186 + 1.37i)15-s + (−0.0717 − 0.239i)16-s + (−1.05 − 0.384i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.593 + 0.805i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.593 + 0.805i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $0.593 + 0.805i$
Analytic conductor: \(1.29357\)
Root analytic conductor: \(1.13735\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1/2),\ 0.593 + 0.805i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.18277 - 0.597777i\)
\(L(\frac12)\) \(\approx\) \(1.18277 - 0.597777i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.893 + 0.448i)T \)
3 \( 1 + (1.57 - 0.714i)T \)
good5 \( 1 + (-0.891 + 2.97i)T + (-4.17 - 2.74i)T^{2} \)
7 \( 1 + (-0.275 + 0.638i)T + (-4.80 - 5.09i)T^{2} \)
11 \( 1 + (-5.37 - 1.27i)T + (9.82 + 4.93i)T^{2} \)
13 \( 1 + (2.73 - 1.79i)T + (5.14 - 11.9i)T^{2} \)
17 \( 1 + (4.35 + 1.58i)T + (13.0 + 10.9i)T^{2} \)
19 \( 1 + (2.23 - 0.813i)T + (14.5 - 12.2i)T^{2} \)
23 \( 1 + (-2.79 - 6.47i)T + (-15.7 + 16.7i)T^{2} \)
29 \( 1 + (-0.0802 + 1.37i)T + (-28.8 - 3.36i)T^{2} \)
31 \( 1 + (3.53 + 0.412i)T + (30.1 + 7.14i)T^{2} \)
37 \( 1 + (0.935 - 0.785i)T + (6.42 - 36.4i)T^{2} \)
41 \( 1 + (-10.1 - 5.09i)T + (24.4 + 32.8i)T^{2} \)
43 \( 1 + (6.37 - 6.76i)T + (-2.50 - 42.9i)T^{2} \)
47 \( 1 + (-10.4 + 1.21i)T + (45.7 - 10.8i)T^{2} \)
53 \( 1 + (2.11 + 3.66i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (5.60 - 1.32i)T + (52.7 - 26.4i)T^{2} \)
61 \( 1 + (-1.03 - 1.38i)T + (-17.4 + 58.4i)T^{2} \)
67 \( 1 + (0.0594 + 1.02i)T + (-66.5 + 7.77i)T^{2} \)
71 \( 1 + (2.04 + 11.6i)T + (-66.7 + 24.2i)T^{2} \)
73 \( 1 + (-1.49 + 8.46i)T + (-68.5 - 24.9i)T^{2} \)
79 \( 1 + (7.86 - 3.94i)T + (47.1 - 63.3i)T^{2} \)
83 \( 1 + (8.11 - 4.07i)T + (49.5 - 66.5i)T^{2} \)
89 \( 1 + (0.642 - 3.64i)T + (-83.6 - 30.4i)T^{2} \)
97 \( 1 + (-0.260 - 0.871i)T + (-81.0 + 53.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.55204893345590904782802790264, −11.84462005148970008890702973021, −11.04058002505688124959898262243, −9.536729812510434187532794496070, −9.190598682414070941361578112530, −7.08160642508245137168627241100, −5.97551388578379152140166185527, −4.77464051846751993426533248379, −4.16415855852344437063442981420, −1.45462424636730809525512148615, 2.40213236492239001614897502792, 4.19515882589399056004505086659, 5.71160675986934105377712409315, 6.62329568264148304565628629688, 7.13019547541616001189107048571, 8.850195769590307936072816922336, 10.47613444300789712951973399632, 11.08263928534936261063704332930, 12.08097173291759542158437975182, 12.94089086641302086157430787164

Graph of the $Z$-function along the critical line