Properties

Label 2-162-81.16-c1-0-0
Degree $2$
Conductor $162$
Sign $-0.848 - 0.528i$
Analytic cond. $1.29357$
Root an. cond. $1.13735$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.973 − 0.230i)2-s + (−0.598 + 1.62i)3-s + (0.893 + 0.448i)4-s + (−1.25 + 1.67i)5-s + (0.956 − 1.44i)6-s + (−0.725 − 0.477i)7-s + (−0.766 − 0.642i)8-s + (−2.28 − 1.94i)9-s + (1.60 − 1.34i)10-s + (−4.15 + 0.486i)11-s + (−1.26 + 1.18i)12-s + (−0.644 + 2.15i)13-s + (0.596 + 0.631i)14-s + (−1.98 − 3.03i)15-s + (0.597 + 0.802i)16-s + (0.766 + 4.34i)17-s + ⋯
L(s)  = 1  + (−0.688 − 0.163i)2-s + (−0.345 + 0.938i)3-s + (0.446 + 0.224i)4-s + (−0.559 + 0.750i)5-s + (0.390 − 0.589i)6-s + (−0.274 − 0.180i)7-s + (−0.270 − 0.227i)8-s + (−0.761 − 0.648i)9-s + (0.507 − 0.425i)10-s + (−1.25 + 0.146i)11-s + (−0.364 + 0.341i)12-s + (−0.178 + 0.597i)13-s + (0.159 + 0.168i)14-s + (−0.511 − 0.784i)15-s + (0.149 + 0.200i)16-s + (0.185 + 1.05i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.848 - 0.528i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.848 - 0.528i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.848 - 0.528i$
Analytic conductor: \(1.29357\)
Root analytic conductor: \(1.13735\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (97, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1/2),\ -0.848 - 0.528i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.115200 + 0.402621i\)
\(L(\frac12)\) \(\approx\) \(0.115200 + 0.402621i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.973 + 0.230i)T \)
3 \( 1 + (0.598 - 1.62i)T \)
good5 \( 1 + (1.25 - 1.67i)T + (-1.43 - 4.78i)T^{2} \)
7 \( 1 + (0.725 + 0.477i)T + (2.77 + 6.42i)T^{2} \)
11 \( 1 + (4.15 - 0.486i)T + (10.7 - 2.53i)T^{2} \)
13 \( 1 + (0.644 - 2.15i)T + (-10.8 - 7.14i)T^{2} \)
17 \( 1 + (-0.766 - 4.34i)T + (-15.9 + 5.81i)T^{2} \)
19 \( 1 + (-0.162 + 0.921i)T + (-17.8 - 6.49i)T^{2} \)
23 \( 1 + (1.33 - 0.876i)T + (9.10 - 21.1i)T^{2} \)
29 \( 1 + (1.00 - 1.06i)T + (-1.68 - 28.9i)T^{2} \)
31 \( 1 + (-0.0259 - 0.445i)T + (-30.7 + 3.59i)T^{2} \)
37 \( 1 + (-6.43 - 2.34i)T + (28.3 + 23.7i)T^{2} \)
41 \( 1 + (-12.1 + 2.88i)T + (36.6 - 18.4i)T^{2} \)
43 \( 1 + (4.10 - 9.51i)T + (-29.5 - 31.2i)T^{2} \)
47 \( 1 + (-0.603 + 10.3i)T + (-46.6 - 5.45i)T^{2} \)
53 \( 1 + (-6.72 - 11.6i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + (3.48 + 0.406i)T + (57.4 + 13.6i)T^{2} \)
61 \( 1 + (9.52 - 4.78i)T + (36.4 - 48.9i)T^{2} \)
67 \( 1 + (-8.97 - 9.50i)T + (-3.89 + 66.8i)T^{2} \)
71 \( 1 + (5.72 - 4.80i)T + (12.3 - 69.9i)T^{2} \)
73 \( 1 + (-0.298 - 0.250i)T + (12.6 + 71.8i)T^{2} \)
79 \( 1 + (12.5 + 2.98i)T + (70.5 + 35.4i)T^{2} \)
83 \( 1 + (-1.56 - 0.370i)T + (74.1 + 37.2i)T^{2} \)
89 \( 1 + (-8.48 - 7.12i)T + (15.4 + 87.6i)T^{2} \)
97 \( 1 + (-2.07 - 2.78i)T + (-27.8 + 92.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10605610190429940022964979306, −11.88999690254385834027291881694, −10.97069018707506946764561071831, −10.38141551581282488342283116618, −9.463087988255789681815788952429, −8.209044634741029786383589077128, −7.12554713709543517743583494987, −5.81328812919611735813494082591, −4.19107606501831344389353880078, −2.89149576318668478118595334983, 0.49480758355865515257774302174, 2.63752577919122728863237155190, 5.02654544100634515596151922130, 6.10084657460340959263278417769, 7.59664631697393282061145130255, 7.991547074943969811513131990194, 9.211813005409434812170176325509, 10.50705639627610572507250240076, 11.52859719393874846669790932308, 12.46973587890951066902740047502

Graph of the $Z$-function along the critical line