Properties

Label 2-162-3.2-c8-0-5
Degree $2$
Conductor $162$
Sign $i$
Analytic cond. $65.9953$
Root an. cond. $8.12375$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.3i·2-s − 128.·4-s + 724. i·5-s − 1.95e3·7-s − 1.44e3i·8-s − 8.20e3·10-s + 2.51e4i·11-s − 6.03e3·13-s − 2.21e4i·14-s + 1.63e4·16-s + 1.46e5i·17-s − 5.95e4·19-s − 9.27e4i·20-s − 2.84e5·22-s − 1.68e5i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 1.15i·5-s − 0.813·7-s − 0.353i·8-s − 0.820·10-s + 1.71i·11-s − 0.211·13-s − 0.575i·14-s + 0.250·16-s + 1.75i·17-s − 0.456·19-s − 0.579i·20-s − 1.21·22-s − 0.602i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $i$
Analytic conductor: \(65.9953\)
Root analytic conductor: \(8.12375\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :4),\ i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(0.7678703061\)
\(L(\frac12)\) \(\approx\) \(0.7678703061\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 11.3iT \)
3 \( 1 \)
good5 \( 1 - 724. iT - 3.90e5T^{2} \)
7 \( 1 + 1.95e3T + 5.76e6T^{2} \)
11 \( 1 - 2.51e4iT - 2.14e8T^{2} \)
13 \( 1 + 6.03e3T + 8.15e8T^{2} \)
17 \( 1 - 1.46e5iT - 6.97e9T^{2} \)
19 \( 1 + 5.95e4T + 1.69e10T^{2} \)
23 \( 1 + 1.68e5iT - 7.83e10T^{2} \)
29 \( 1 - 8.76e5iT - 5.00e11T^{2} \)
31 \( 1 + 7.14e5T + 8.52e11T^{2} \)
37 \( 1 + 5.34e5T + 3.51e12T^{2} \)
41 \( 1 - 1.96e6iT - 7.98e12T^{2} \)
43 \( 1 - 6.10e6T + 1.16e13T^{2} \)
47 \( 1 - 2.83e6iT - 2.38e13T^{2} \)
53 \( 1 + 9.99e6iT - 6.22e13T^{2} \)
59 \( 1 + 4.50e6iT - 1.46e14T^{2} \)
61 \( 1 + 1.83e7T + 1.91e14T^{2} \)
67 \( 1 + 2.60e7T + 4.06e14T^{2} \)
71 \( 1 - 2.94e6iT - 6.45e14T^{2} \)
73 \( 1 - 2.60e7T + 8.06e14T^{2} \)
79 \( 1 - 6.66e7T + 1.51e15T^{2} \)
83 \( 1 + 4.64e7iT - 2.25e15T^{2} \)
89 \( 1 + 9.06e7iT - 3.93e15T^{2} \)
97 \( 1 - 1.49e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.49205372750432205747510975627, −10.75766158325568226608309456974, −10.13244742549880569916706687888, −9.072974114206281231367149053055, −7.67243936745741054509346385639, −6.82619986471166055473573500320, −6.13512732845275592424781694998, −4.55709050984648091303539598539, −3.35835542406641963367878152238, −1.94660556983890851511802763683, 0.23278412989715698207983892120, 0.903684851125420247907695008225, 2.61435416719910056702796121793, 3.74253719530711999031067419731, 5.04327047038581613553020869964, 6.04056284893218608994297499551, 7.69106120974489418466390206766, 8.981492447228646401252350428798, 9.339532502749608690509125433700, 10.70356039788339454142298577120

Graph of the $Z$-function along the critical line