Properties

Label 2-162-3.2-c8-0-27
Degree $2$
Conductor $162$
Sign $i$
Analytic cond. $65.9953$
Root an. cond. $8.12375$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.3i·2-s − 128.·4-s − 654. i·5-s + 1.29e3·7-s − 1.44e3i·8-s + 7.40e3·10-s − 4.40e3i·11-s − 246.·13-s + 1.47e4i·14-s + 1.63e4·16-s − 8.90e4i·17-s + 1.45e5·19-s + 8.37e4i·20-s + 4.98e4·22-s + 3.55e5i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s − 1.04i·5-s + 0.541·7-s − 0.353i·8-s + 0.740·10-s − 0.301i·11-s − 0.00861·13-s + 0.382i·14-s + 0.250·16-s − 1.06i·17-s + 1.11·19-s + 0.523i·20-s + 0.212·22-s + 1.27i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $i$
Analytic conductor: \(65.9953\)
Root analytic conductor: \(8.12375\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :4),\ i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.394754426\)
\(L(\frac12)\) \(\approx\) \(1.394754426\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 11.3iT \)
3 \( 1 \)
good5 \( 1 + 654. iT - 3.90e5T^{2} \)
7 \( 1 - 1.29e3T + 5.76e6T^{2} \)
11 \( 1 + 4.40e3iT - 2.14e8T^{2} \)
13 \( 1 + 246.T + 8.15e8T^{2} \)
17 \( 1 + 8.90e4iT - 6.97e9T^{2} \)
19 \( 1 - 1.45e5T + 1.69e10T^{2} \)
23 \( 1 - 3.55e5iT - 7.83e10T^{2} \)
29 \( 1 - 6.35e4iT - 5.00e11T^{2} \)
31 \( 1 + 9.72e5T + 8.52e11T^{2} \)
37 \( 1 + 4.08e5T + 3.51e12T^{2} \)
41 \( 1 + 3.59e6iT - 7.98e12T^{2} \)
43 \( 1 + 4.83e6T + 1.16e13T^{2} \)
47 \( 1 - 1.25e6iT - 2.38e13T^{2} \)
53 \( 1 + 1.23e7iT - 6.22e13T^{2} \)
59 \( 1 + 3.30e6iT - 1.46e14T^{2} \)
61 \( 1 - 1.51e7T + 1.91e14T^{2} \)
67 \( 1 + 1.76e7T + 4.06e14T^{2} \)
71 \( 1 + 2.66e7iT - 6.45e14T^{2} \)
73 \( 1 + 1.28e7T + 8.06e14T^{2} \)
79 \( 1 - 5.49e7T + 1.51e15T^{2} \)
83 \( 1 + 9.14e6iT - 2.25e15T^{2} \)
89 \( 1 - 5.99e7iT - 3.93e15T^{2} \)
97 \( 1 - 1.07e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.26429441904918535027431173198, −9.718698351105912329435091069472, −8.955349121603095698394274268134, −7.977987845344614154018112228320, −7.04006748655955136255151245436, −5.44408177573993765723074110979, −4.96622159822731135247967564470, −3.49317481692258953464687564948, −1.53092308033709128563808825005, −0.35595863417613802871883126837, 1.35074560142666889127378069781, 2.55611855536053374170899808270, 3.65585765890095961972491350134, 4.94418041718299160267072052098, 6.33811071964865885038713283558, 7.51920531296853240942023673201, 8.614552636997785830898385132934, 9.904885100501877627620946674657, 10.67579225061971742916399660718, 11.44199592044889091871411513110

Graph of the $Z$-function along the critical line