Properties

Label 2-162-3.2-c8-0-15
Degree $2$
Conductor $162$
Sign $-i$
Analytic cond. $65.9953$
Root an. cond. $8.12375$
Motivic weight $8$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 11.3i·2-s − 128.·4-s + 618. i·5-s − 549.·7-s − 1.44e3i·8-s − 6.99e3·10-s − 1.92e4i·11-s + 2.08e3·13-s − 6.21e3i·14-s + 1.63e4·16-s + 5.81e4i·17-s + 2.02e5·19-s − 7.91e4i·20-s + 2.18e5·22-s − 6.90e4i·23-s + ⋯
L(s)  = 1  + 0.707i·2-s − 0.500·4-s + 0.988i·5-s − 0.228·7-s − 0.353i·8-s − 0.699·10-s − 1.31i·11-s + 0.0729·13-s − 0.161i·14-s + 0.250·16-s + 0.696i·17-s + 1.55·19-s − 0.494i·20-s + 0.930·22-s − 0.246i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(9-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+4) \, L(s)\cr =\mathstrut & -i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-i$
Analytic conductor: \(65.9953\)
Root analytic conductor: \(8.12375\)
Motivic weight: \(8\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :4),\ -i)\)

Particular Values

\(L(\frac{9}{2})\) \(\approx\) \(1.897046487\)
\(L(\frac12)\) \(\approx\) \(1.897046487\)
\(L(5)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 11.3iT \)
3 \( 1 \)
good5 \( 1 - 618. iT - 3.90e5T^{2} \)
7 \( 1 + 549.T + 5.76e6T^{2} \)
11 \( 1 + 1.92e4iT - 2.14e8T^{2} \)
13 \( 1 - 2.08e3T + 8.15e8T^{2} \)
17 \( 1 - 5.81e4iT - 6.97e9T^{2} \)
19 \( 1 - 2.02e5T + 1.69e10T^{2} \)
23 \( 1 + 6.90e4iT - 7.83e10T^{2} \)
29 \( 1 + 3.62e5iT - 5.00e11T^{2} \)
31 \( 1 - 5.45e4T + 8.52e11T^{2} \)
37 \( 1 - 6.32e5T + 3.51e12T^{2} \)
41 \( 1 + 5.05e6iT - 7.98e12T^{2} \)
43 \( 1 - 1.99e6T + 1.16e13T^{2} \)
47 \( 1 - 7.04e6iT - 2.38e13T^{2} \)
53 \( 1 - 4.75e6iT - 6.22e13T^{2} \)
59 \( 1 - 6.52e6iT - 1.46e14T^{2} \)
61 \( 1 - 9.32e6T + 1.91e14T^{2} \)
67 \( 1 - 1.17e7T + 4.06e14T^{2} \)
71 \( 1 - 3.81e7iT - 6.45e14T^{2} \)
73 \( 1 - 5.36e7T + 8.06e14T^{2} \)
79 \( 1 + 5.15e7T + 1.51e15T^{2} \)
83 \( 1 - 3.30e7iT - 2.25e15T^{2} \)
89 \( 1 + 1.36e7iT - 3.93e15T^{2} \)
97 \( 1 + 1.10e8T + 7.83e15T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44089692340248231901537746312, −10.60286392365932041563978921554, −9.496221909515839305877392581099, −8.365079008873366626076999873556, −7.35231383465753443555887106262, −6.33699161860513947077346448981, −5.50165470093472221681167620115, −3.82029644935601849876109611816, −2.82393714169690310587027056598, −0.844315332310920484888870373235, 0.66397986049757119928875975777, 1.73063820956850096207760301638, 3.16305467996213042064260113876, 4.56826234334183285500742062603, 5.30369873355272299932793627749, 7.01799187556822074483554460075, 8.181462419215582459658257981670, 9.442429598048949868859524661919, 9.810920789148714991045170878199, 11.28671104385877457718756459998

Graph of the $Z$-function along the critical line