L(s) = 1 | + (0.939 − 0.342i)2-s + (0.766 − 0.642i)4-s + (0.177 + 1.00i)5-s + (2.04 + 1.71i)7-s + (0.500 − 0.866i)8-s + (0.510 + 0.884i)10-s + (0.720 − 4.08i)11-s + (−3.68 − 1.34i)13-s + (2.50 + 0.912i)14-s + (0.173 − 0.984i)16-s + (−0.925 − 1.60i)17-s + (−3.21 + 5.57i)19-s + (0.782 + 0.656i)20-s + (−0.720 − 4.08i)22-s + (−6.69 + 5.61i)23-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (0.383 − 0.321i)4-s + (0.0793 + 0.449i)5-s + (0.772 + 0.647i)7-s + (0.176 − 0.306i)8-s + (0.161 + 0.279i)10-s + (0.217 − 1.23i)11-s + (−1.02 − 0.371i)13-s + (0.669 + 0.243i)14-s + (0.0434 − 0.246i)16-s + (−0.224 − 0.388i)17-s + (−0.737 + 1.27i)19-s + (0.174 + 0.146i)20-s + (−0.153 − 0.870i)22-s + (−1.39 + 1.17i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 + 0.183i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.983 + 0.183i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.64943 - 0.152370i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64943 - 0.152370i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.939 + 0.342i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (-0.177 - 1.00i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (-2.04 - 1.71i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (-0.720 + 4.08i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (3.68 + 1.34i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (0.925 + 1.60i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.21 - 5.57i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (6.69 - 5.61i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (-1.17 + 0.428i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (2.56 - 2.15i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (4.58 + 7.94i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-3.53 - 1.28i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.536 + 3.04i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (-2.11 - 1.77i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 - 0.231T + 53T^{2} \) |
| 59 | \( 1 + (0.613 + 3.48i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-0.405 - 0.339i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-7.67 - 2.79i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (-4.03 - 6.98i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.57 + 2.72i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.43 + 0.886i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (7.55 - 2.74i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (-6.12 + 10.6i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.51 - 8.57i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.70118283498717310568606281000, −11.88957933008119171476768607721, −11.03860942432582617536229109951, −10.07194377505328505706785466626, −8.685420691787276154031483093581, −7.56990106381495019524599459151, −6.11315354050672813721479667293, −5.24229688523698948603732589841, −3.68522913873082516312178388797, −2.21131508332172688628203670088,
2.14794964920307706180648382101, 4.36501419556530549543279003645, 4.83543078379614275494892395084, 6.57612713368289664724963996548, 7.47190299451493745656812940374, 8.652953142322801472795583671986, 9.965089922886714194556645245831, 11.03872743182778520268979062882, 12.18438802467002272515922534354, 12.81609169288401124590846302271