Properties

Label 2-162-27.11-c2-0-4
Degree $2$
Conductor $162$
Sign $-0.100 + 0.994i$
Analytic cond. $4.41418$
Root an. cond. $2.10099$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.909 − 1.08i)2-s + (−0.347 − 1.96i)4-s + (−0.696 + 1.91i)5-s + (2.23 − 12.6i)7-s + (−2.44 − 1.41i)8-s + (1.44 + 2.49i)10-s + (−1.28 − 3.52i)11-s + (6.69 − 5.61i)13-s + (−11.6 − 13.9i)14-s + (−3.75 + 1.36i)16-s + (20.4 − 11.8i)17-s + (−2.58 + 4.47i)19-s + (4.01 + 0.707i)20-s + (−4.98 − 1.81i)22-s + (−34.3 + 6.04i)23-s + ⋯
L(s)  = 1  + (0.454 − 0.541i)2-s + (−0.0868 − 0.492i)4-s + (−0.139 + 0.382i)5-s + (0.318 − 1.80i)7-s + (−0.306 − 0.176i)8-s + (0.144 + 0.249i)10-s + (−0.116 − 0.320i)11-s + (0.515 − 0.432i)13-s + (−0.834 − 0.994i)14-s + (−0.234 + 0.0855i)16-s + (1.20 − 0.694i)17-s + (−0.135 + 0.235i)19-s + (0.200 + 0.0353i)20-s + (−0.226 − 0.0824i)22-s + (−1.49 + 0.262i)23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.100 + 0.994i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-0.100 + 0.994i$
Analytic conductor: \(4.41418\)
Root analytic conductor: \(2.10099\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (35, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :1),\ -0.100 + 0.994i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.18506 - 1.31023i\)
\(L(\frac12)\) \(\approx\) \(1.18506 - 1.31023i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.909 + 1.08i)T \)
3 \( 1 \)
good5 \( 1 + (0.696 - 1.91i)T + (-19.1 - 16.0i)T^{2} \)
7 \( 1 + (-2.23 + 12.6i)T + (-46.0 - 16.7i)T^{2} \)
11 \( 1 + (1.28 + 3.52i)T + (-92.6 + 77.7i)T^{2} \)
13 \( 1 + (-6.69 + 5.61i)T + (29.3 - 166. i)T^{2} \)
17 \( 1 + (-20.4 + 11.8i)T + (144.5 - 250. i)T^{2} \)
19 \( 1 + (2.58 - 4.47i)T + (-180.5 - 312. i)T^{2} \)
23 \( 1 + (34.3 - 6.04i)T + (497. - 180. i)T^{2} \)
29 \( 1 + (18.1 - 21.6i)T + (-146. - 828. i)T^{2} \)
31 \( 1 + (0.600 + 3.40i)T + (-903. + 328. i)T^{2} \)
37 \( 1 + (-27.7 - 48.1i)T + (-684.5 + 1.18e3i)T^{2} \)
41 \( 1 + (-10.1 - 12.1i)T + (-291. + 1.65e3i)T^{2} \)
43 \( 1 + (-49.2 + 17.9i)T + (1.41e3 - 1.18e3i)T^{2} \)
47 \( 1 + (-53.2 - 9.38i)T + (2.07e3 + 755. i)T^{2} \)
53 \( 1 + 0.286iT - 2.80e3T^{2} \)
59 \( 1 + (3.64 - 10.0i)T + (-2.66e3 - 2.23e3i)T^{2} \)
61 \( 1 + (16.4 - 93.1i)T + (-3.49e3 - 1.27e3i)T^{2} \)
67 \( 1 + (-16.2 + 13.6i)T + (779. - 4.42e3i)T^{2} \)
71 \( 1 + (-89.4 + 51.6i)T + (2.52e3 - 4.36e3i)T^{2} \)
73 \( 1 + (-11.9 + 20.7i)T + (-2.66e3 - 4.61e3i)T^{2} \)
79 \( 1 + (9.54 + 8.00i)T + (1.08e3 + 6.14e3i)T^{2} \)
83 \( 1 + (46.6 - 55.5i)T + (-1.19e3 - 6.78e3i)T^{2} \)
89 \( 1 + (56.5 + 32.6i)T + (3.96e3 + 6.85e3i)T^{2} \)
97 \( 1 + (31.7 - 11.5i)T + (7.20e3 - 6.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.36786558839103018449157399580, −11.19653680089472585289850819577, −10.58151684085671292783673064522, −9.728130010295273892021907158605, −8.010331913910326816485354402863, −7.13651755504415984700630825743, −5.69703980209406968233253473212, −4.23558226434556331078932946456, −3.26179230315776681015145305324, −1.06517228090909460887287716014, 2.29960310778749677352127793026, 4.10156304849528003620261792302, 5.47508331927760724402738731783, 6.15411892580812318527757394085, 7.83293052409912943684309171991, 8.604557989878896799085819638418, 9.580095831458691832311292441985, 11.18631392213706185102302113132, 12.35508155402999853878597294385, 12.53166437078265658226192381107

Graph of the $Z$-function along the critical line