Properties

Label 2-162-1.1-c7-0-20
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $50.6063$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 64·4-s + 280.·5-s − 164.·7-s − 512·8-s − 2.24e3·10-s + 2.03e3·11-s − 1.67e3·13-s + 1.31e3·14-s + 4.09e3·16-s − 3.16e4·17-s − 1.26e4·19-s + 1.79e4·20-s − 1.63e4·22-s − 4.94e4·23-s + 513.·25-s + 1.34e4·26-s − 1.05e4·28-s + 7.55e3·29-s + 1.56e5·31-s − 3.27e4·32-s + 2.53e5·34-s − 4.60e4·35-s + 5.41e5·37-s + 1.01e5·38-s − 1.43e5·40-s − 5.37e5·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s + 1.00·5-s − 0.181·7-s − 0.353·8-s − 0.709·10-s + 0.461·11-s − 0.211·13-s + 0.128·14-s + 0.250·16-s − 1.56·17-s − 0.422·19-s + 0.501·20-s − 0.326·22-s − 0.847·23-s + 0.00656·25-s + 0.149·26-s − 0.0905·28-s + 0.0575·29-s + 0.940·31-s − 0.176·32-s + 1.10·34-s − 0.181·35-s + 1.75·37-s + 0.298·38-s − 0.354·40-s − 1.21·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(50.6063\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 \)
good5 \( 1 - 280.T + 7.81e4T^{2} \)
7 \( 1 + 164.T + 8.23e5T^{2} \)
11 \( 1 - 2.03e3T + 1.94e7T^{2} \)
13 \( 1 + 1.67e3T + 6.27e7T^{2} \)
17 \( 1 + 3.16e4T + 4.10e8T^{2} \)
19 \( 1 + 1.26e4T + 8.93e8T^{2} \)
23 \( 1 + 4.94e4T + 3.40e9T^{2} \)
29 \( 1 - 7.55e3T + 1.72e10T^{2} \)
31 \( 1 - 1.56e5T + 2.75e10T^{2} \)
37 \( 1 - 5.41e5T + 9.49e10T^{2} \)
41 \( 1 + 5.37e5T + 1.94e11T^{2} \)
43 \( 1 - 2.00e5T + 2.71e11T^{2} \)
47 \( 1 - 4.10e5T + 5.06e11T^{2} \)
53 \( 1 + 1.36e6T + 1.17e12T^{2} \)
59 \( 1 + 7.98e5T + 2.48e12T^{2} \)
61 \( 1 - 5.69e5T + 3.14e12T^{2} \)
67 \( 1 + 4.80e6T + 6.06e12T^{2} \)
71 \( 1 + 2.45e6T + 9.09e12T^{2} \)
73 \( 1 - 1.60e6T + 1.10e13T^{2} \)
79 \( 1 - 5.58e6T + 1.92e13T^{2} \)
83 \( 1 + 9.82e6T + 2.71e13T^{2} \)
89 \( 1 - 1.17e5T + 4.42e13T^{2} \)
97 \( 1 + 7.79e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.85385826934658437406856140664, −9.859959024395858474011310643770, −9.177238195058931437877851130185, −8.100473625524608215363818139229, −6.69216954773100407781264058887, −6.00620945808165988110759207462, −4.40746364399037075461460772965, −2.61286299848058691827103073186, −1.58517687163218254780867683395, 0, 1.58517687163218254780867683395, 2.61286299848058691827103073186, 4.40746364399037075461460772965, 6.00620945808165988110759207462, 6.69216954773100407781264058887, 8.100473625524608215363818139229, 9.177238195058931437877851130185, 9.859959024395858474011310643770, 10.85385826934658437406856140664

Graph of the $Z$-function along the critical line