Properties

Label 2-162-1.1-c7-0-11
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $50.6063$
Root an. cond. $7.11381$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s + 64·4-s − 325.·5-s − 1.45e3·7-s − 512·8-s + 2.60e3·10-s + 5.55e3·11-s + 1.35e4·13-s + 1.16e4·14-s + 4.09e3·16-s − 1.18e4·17-s + 4.45e4·19-s − 2.08e4·20-s − 4.44e4·22-s − 2.68e4·23-s + 2.78e4·25-s − 1.08e5·26-s − 9.28e4·28-s − 1.40e5·29-s + 1.65e5·31-s − 3.27e4·32-s + 9.46e4·34-s + 4.72e5·35-s + 3.63e4·37-s − 3.56e5·38-s + 1.66e5·40-s + 4.78e5·41-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.5·4-s − 1.16·5-s − 1.59·7-s − 0.353·8-s + 0.823·10-s + 1.25·11-s + 1.70·13-s + 1.13·14-s + 0.250·16-s − 0.583·17-s + 1.48·19-s − 0.582·20-s − 0.889·22-s − 0.459·23-s + 0.356·25-s − 1.20·26-s − 0.799·28-s − 1.07·29-s + 0.998·31-s − 0.176·32-s + 0.412·34-s + 1.86·35-s + 0.117·37-s − 1.05·38-s + 0.411·40-s + 1.08·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(50.6063\)
Root analytic conductor: \(7.11381\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
3 \( 1 \)
good5 \( 1 + 325.T + 7.81e4T^{2} \)
7 \( 1 + 1.45e3T + 8.23e5T^{2} \)
11 \( 1 - 5.55e3T + 1.94e7T^{2} \)
13 \( 1 - 1.35e4T + 6.27e7T^{2} \)
17 \( 1 + 1.18e4T + 4.10e8T^{2} \)
19 \( 1 - 4.45e4T + 8.93e8T^{2} \)
23 \( 1 + 2.68e4T + 3.40e9T^{2} \)
29 \( 1 + 1.40e5T + 1.72e10T^{2} \)
31 \( 1 - 1.65e5T + 2.75e10T^{2} \)
37 \( 1 - 3.63e4T + 9.49e10T^{2} \)
41 \( 1 - 4.78e5T + 1.94e11T^{2} \)
43 \( 1 + 6.04e5T + 2.71e11T^{2} \)
47 \( 1 + 5.03e5T + 5.06e11T^{2} \)
53 \( 1 + 1.99e6T + 1.17e12T^{2} \)
59 \( 1 + 6.09e5T + 2.48e12T^{2} \)
61 \( 1 - 1.90e6T + 3.14e12T^{2} \)
67 \( 1 - 1.77e6T + 6.06e12T^{2} \)
71 \( 1 + 1.00e6T + 9.09e12T^{2} \)
73 \( 1 - 1.46e5T + 1.10e13T^{2} \)
79 \( 1 + 7.27e6T + 1.92e13T^{2} \)
83 \( 1 - 5.37e6T + 2.71e13T^{2} \)
89 \( 1 - 2.94e6T + 4.42e13T^{2} \)
97 \( 1 + 7.91e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.20085595331625711486415438289, −9.799840546048895810980123722792, −9.074757220379804907551173097935, −8.020161533218158218577496579493, −6.83532801976724897536650279082, −6.10266754687602312574599926942, −3.91084765377856554516121489971, −3.25821024485899897914048814124, −1.17622267863994156066916097872, 0, 1.17622267863994156066916097872, 3.25821024485899897914048814124, 3.91084765377856554516121489971, 6.10266754687602312574599926942, 6.83532801976724897536650279082, 8.020161533218158218577496579493, 9.074757220379804907551173097935, 9.799840546048895810980123722792, 11.20085595331625711486415438289

Graph of the $Z$-function along the critical line