Properties

Label 2-162-1.1-c5-0-8
Degree $2$
Conductor $162$
Sign $1$
Analytic cond. $25.9821$
Root an. cond. $5.09727$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·2-s + 16·4-s + 21·5-s + 74·7-s + 64·8-s + 84·10-s + 270·11-s − 115·13-s + 296·14-s + 256·16-s − 861·17-s + 1.85e3·19-s + 336·20-s + 1.08e3·22-s + 3.61e3·23-s − 2.68e3·25-s − 460·26-s + 1.18e3·28-s + 1.12e3·29-s + 5.22e3·31-s + 1.02e3·32-s − 3.44e3·34-s + 1.55e3·35-s + 9.91e3·37-s + 7.40e3·38-s + 1.34e3·40-s + 1.07e4·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.375·5-s + 0.570·7-s + 0.353·8-s + 0.265·10-s + 0.672·11-s − 0.188·13-s + 0.403·14-s + 1/4·16-s − 0.722·17-s + 1.17·19-s + 0.187·20-s + 0.475·22-s + 1.42·23-s − 0.858·25-s − 0.133·26-s + 0.285·28-s + 0.248·29-s + 0.977·31-s + 0.176·32-s − 0.510·34-s + 0.214·35-s + 1.19·37-s + 0.831·38-s + 0.132·40-s + 0.999·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(25.9821\)
Root analytic conductor: \(5.09727\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.688160762\)
\(L(\frac12)\) \(\approx\) \(3.688160762\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p^{2} T \)
3 \( 1 \)
good5 \( 1 - 21 T + p^{5} T^{2} \)
7 \( 1 - 74 T + p^{5} T^{2} \)
11 \( 1 - 270 T + p^{5} T^{2} \)
13 \( 1 + 115 T + p^{5} T^{2} \)
17 \( 1 + 861 T + p^{5} T^{2} \)
19 \( 1 - 1850 T + p^{5} T^{2} \)
23 \( 1 - 3618 T + p^{5} T^{2} \)
29 \( 1 - 1125 T + p^{5} T^{2} \)
31 \( 1 - 5228 T + p^{5} T^{2} \)
37 \( 1 - 9917 T + p^{5} T^{2} \)
41 \( 1 - 10758 T + p^{5} T^{2} \)
43 \( 1 + 19714 T + p^{5} T^{2} \)
47 \( 1 - 9984 T + p^{5} T^{2} \)
53 \( 1 - 36726 T + p^{5} T^{2} \)
59 \( 1 - 26460 T + p^{5} T^{2} \)
61 \( 1 + 53779 T + p^{5} T^{2} \)
67 \( 1 + 12934 T + p^{5} T^{2} \)
71 \( 1 + 4254 T + p^{5} T^{2} \)
73 \( 1 + 17521 T + p^{5} T^{2} \)
79 \( 1 + 36946 T + p^{5} T^{2} \)
83 \( 1 + 76416 T + p^{5} T^{2} \)
89 \( 1 + 45357 T + p^{5} T^{2} \)
97 \( 1 - 127574 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.86939120401867914331251600869, −11.28350220388998770695686811362, −10.02002315784318190620953317008, −8.925599390208910191938525609957, −7.58855218103548343461047267106, −6.50092836864793372121601640969, −5.32492397334395679959911029020, −4.25849581621773065977264689695, −2.75100931142022291058618139198, −1.27017748816807925944253622820, 1.27017748816807925944253622820, 2.75100931142022291058618139198, 4.25849581621773065977264689695, 5.32492397334395679959911029020, 6.50092836864793372121601640969, 7.58855218103548343461047267106, 8.925599390208910191938525609957, 10.02002315784318190620953317008, 11.28350220388998770695686811362, 11.86939120401867914331251600869

Graph of the $Z$-function along the critical line