Properties

Label 2-162-1.1-c3-0-11
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $9.55830$
Root an. cond. $3.09165$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 4·4-s − 9·5-s − 31·7-s + 8·8-s − 18·10-s − 15·11-s − 37·13-s − 62·14-s + 16·16-s − 42·17-s − 28·19-s − 36·20-s − 30·22-s + 195·23-s − 44·25-s − 74·26-s − 124·28-s + 111·29-s − 205·31-s + 32·32-s − 84·34-s + 279·35-s − 166·37-s − 56·38-s − 72·40-s − 261·41-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.804·5-s − 1.67·7-s + 0.353·8-s − 0.569·10-s − 0.411·11-s − 0.789·13-s − 1.18·14-s + 1/4·16-s − 0.599·17-s − 0.338·19-s − 0.402·20-s − 0.290·22-s + 1.76·23-s − 0.351·25-s − 0.558·26-s − 0.836·28-s + 0.710·29-s − 1.18·31-s + 0.176·32-s − 0.423·34-s + 1.34·35-s − 0.737·37-s − 0.239·38-s − 0.284·40-s − 0.994·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(9.55830\)
Root analytic conductor: \(3.09165\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 162,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - p T \)
3 \( 1 \)
good5 \( 1 + 9 T + p^{3} T^{2} \)
7 \( 1 + 31 T + p^{3} T^{2} \)
11 \( 1 + 15 T + p^{3} T^{2} \)
13 \( 1 + 37 T + p^{3} T^{2} \)
17 \( 1 + 42 T + p^{3} T^{2} \)
19 \( 1 + 28 T + p^{3} T^{2} \)
23 \( 1 - 195 T + p^{3} T^{2} \)
29 \( 1 - 111 T + p^{3} T^{2} \)
31 \( 1 + 205 T + p^{3} T^{2} \)
37 \( 1 + 166 T + p^{3} T^{2} \)
41 \( 1 + 261 T + p^{3} T^{2} \)
43 \( 1 + p T + p^{3} T^{2} \)
47 \( 1 - 177 T + p^{3} T^{2} \)
53 \( 1 - 114 T + p^{3} T^{2} \)
59 \( 1 - 159 T + p^{3} T^{2} \)
61 \( 1 - 191 T + p^{3} T^{2} \)
67 \( 1 + 421 T + p^{3} T^{2} \)
71 \( 1 - 156 T + p^{3} T^{2} \)
73 \( 1 - 182 T + p^{3} T^{2} \)
79 \( 1 - 1133 T + p^{3} T^{2} \)
83 \( 1 + 1083 T + p^{3} T^{2} \)
89 \( 1 + 1050 T + p^{3} T^{2} \)
97 \( 1 + 901 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.19716085641036855447796100935, −11.03888068542885145618094628924, −10.00408977443763000520444292620, −8.838873136956922241005569597564, −7.32640427102628944943240448901, −6.60776506560218590184122898675, −5.18741973227182015123376982753, −3.81606404181570300240261140799, −2.76392463632484514857915266629, 0, 2.76392463632484514857915266629, 3.81606404181570300240261140799, 5.18741973227182015123376982753, 6.60776506560218590184122898675, 7.32640427102628944943240448901, 8.838873136956922241005569597564, 10.00408977443763000520444292620, 11.03888068542885145618094628924, 12.19716085641036855447796100935

Graph of the $Z$-function along the critical line